ΗΔΤCΗ

March 2023

Sheep River Flood Hazard Study

Design Flood Hazard Mapping

Submitted to:

Alberta Environment and Parks 11th Floor, Oxbridge Place 9820- 106 Street NW Edmonton, Alberta, T5K 2J6

Report Number: H365186-00000-228-230-0001, Rev. 1

Distribution:

Alberta Environment and Parks

Design Flood Hazard Mapping

Report

Sheep River Hazard Study Design Flood Hazard Mapping

H365186-0000-228-230-0004

2023-03-31	1	Final	S. Zare/N. Langenberg	J. Groeneveld	J. Groeneveld
DATE	REV.	STATUS	PREPARED BY	CHECKED BY	APPROVED BY
				Discipline Director	Functional Director

© Hatch 2023 All rights reserved, including all rights relating to the use of this document or its contents.

Executive Summary

Alberta Environment and Parks retained Hatch to complete a flood hazard study for a reach of the Sheep River (the Study). The primary purpose of the Study is to assess and identify river and flood hazards along an approximately 60-kilometer-long reach of the Sheep River, and a 35-kilometer-long reach of Threepoint Creek in the Municipal District of Foothills No. 31. This includes the Towns of Black Diamond, Turner Valley, Okotoks and the Hamlet of Millarville.

The study is being completed under the provincial Flood Hazard Identification Program (FHIP), the goals of which include enhancement of public safety and reduction of future flood damages through the identification of river and flood hazards. Project stakeholders include the government of Alberta, the towns of Okotoks, Turner Valley, and Black Diamond, the Municipal District of Foothills No. 31, and the public.

The Sheep River Hazard Study includes multiple components and deliverables. This report summarizes the work of the design flood hazard mapping component of the study. A summary of the work related to the determination of the governing design flood and flood hazard mapping production is provided. Flood hazard areas are utilized for the open water design flood, composed of floodway and flood fringe zones.

The design flood event for the study area is a scenario involving passage of the 100-year open water flood, and this reflects the most severe flood hazard in each reach.

Impacts during this event would include:

- Inundation of 337 residential buildings, resulting in a population at risk of approximately 1029 residents.
- Inundation of 87 non-residential buildings, including flooding of the waste water treatment facility in Okotoks. Inundation will also isolate the water treatment facility in Okotoks, but actual flooding within the facility would be limited.
- Transportation infrastructure impacts would consist of:
 - Inundation of an 800 m stretch of Highway 2A adjacent to the Sheep River
 - Impacts to an approximately 25 km length of roadway in the study area.

The lower chords would be submerged on two bridges on the Sheep River – the Highway 2A crossing in Okotoks and the Highway 22 crossing in Black Diamond.

Acknowledgements

The authors express their special thanks to Kurt Morrison, Peter Bezeau, and Pat Stevenson of Alberta Environment and Parks (AEP), who provided overall study management, background data, and technical guidance for this study.

The following members of Hatch completed the hydraulic modelling component of this study:

- Joe Groeneveld, Project Manager and technical advisor
- Babak Alinejad, Project Engineer and flood risk assessment inventory
- Soheil Zare, Hydraulic modelling and mapping
- Mark Orton, Hydrology review
- Shayla Murphy, Mapping
- Nadia Langenberg, Mapping
- Rachel Groeneveld, Mapping and flood risk assessment inventory

The study team would also like to thank the following agencies, each of which provided valuable information and assistance in the completion of this portion of the study:

- Municipal District of Foothills No. 31;
- Town of Black Diamond;
- Town of Okotoks;
- Town of Turner Valley;
- Water Survey of Canada; and
- Informatics Branch of Alberta Environment and Parks
- Amec Foster Wheeler (initial investigator, who supplied the surveys and cross sectional data)

Alberta Environment and Parks Sheep River Flood Hazard Study H365186

Table of Contents

Exe	cutiv	e Summary	i		
Acl	knowl	edgements	ii		
1.	Intro	duction	1		
	1.1 1.2 1.3	Study Background Study Objectives Study Area & Reach	1 1 2		
2.	Avail	able Data	3		
	2.1 2.2 2.3	Flood Hydrology Survey and DTM Data HEC-RAS Model	3 4 5		
3.	Desig	gn Flood Hazard Determination	5		
	3.1 3.2 3.3	Design Flood Floodway and Flood Fringe Terminology Design Flood Profile			
4.	Desig	gn Flood Hazard Map Production3	1		
	4.1 4.2 4.3	Floodway Mapping Methodology 3 Floodway Criteria Maps 3 Flood Hazard Maps 3 4.3.1 Overview 3 4.3.2 Areas in the Floodway 3 4.3.3 Areas in the Flood Fringe 3	1 2 2 3		
5.	Desig	gn Flood Grids	4		
	5.1 5.2	Water Surface Elevation Grids	4 4		
6.	Conc	lusions3	4		
7.	Refe	rences	4		

List of Tables

Table 2-1 – Annual maximum instantaneous discharge values applied to the model	4
Table 3-1 – Floodway Limit Stations and Governing Criteria – Threepoint Creek	7
Table 3-2 – Floodway Limit Stations and Governing Criteria – Sheep River	11
Table 3-3 – Design Flood Profile for Threepoint Creek	19
Table 3-4 – Design Flood Profile for Sheep River	23
5	

Alberta Environment and Parks Sheep River Flood Hazard Study H365186

List of Figures

Figure 1	I-1: Study	⁷ Reach	.3
----------	------------	--------------------	----

1. Introduction

Alberta Environment and Parks retained Hatch to complete a flood hazard study for a reach of the Sheep River (the Study). The primary purpose of the Study is to assess and identify river and flood hazards along an approximately 60 kilometer long reach of the Sheep River, and a 35 kilometer long reach of Threepoint Creek in the Municipal District of Foothills No. 31. This includes the Towns of Black Diamond, Turner Valley, Okotoks and the Hamlet of Millarville.

The upstream limit of the study reach is located approximately 60 km upstream of the Highwood confluence, just to the west of section 20-19-3-W5M. This is approximately 8 km southwest of Turner Valley. The Threepoint Creek study reach extends from its confluence with the Sheep River, 35 km upstream, to its confluence with Ware Creek (just to the northwest quarter of 23-20-04-W5M).

1.1 Study Background

As described by AEP, "the study will be completed under the provincial Flood Hazard Identification Program (FHIP), the goals of which include enhancement of public safety and reduction of future flood damages through the identification of river and flood hazards. Project stakeholders include the provincial government, local authorities, and the public."

This project was originally awarded to Amec Foster Wheeler (AFW) in 2015, and AFW completed a portion of the scope before their contract ended. Hatch was retained to complete the remainder of the study.

1.2 Study Objectives

Similar to other flood hazard studies undertaken by the Province, the Sheep River Study includes multiple components and deliverables:

- Survey and Base Data Collection Report (Previously completed by AFW)- Volume 1;
- Hydraulic Model Creation, Calibration, and Open Water Flood Inundation Map Production Report - Volume 2;
- Open Water Flood Hazard Identification Report Volume 3;
- Governing Design Flood Hazard Mapping Report Volume 4 (not required for this study, since open water flood conditions govern for this reach);
- Flood Risk Assessment and Inventory Report Volume 5; and
- Channel Stability Investigation Report Volume 6.

This document represents Volume 3 and provides details of the Design Flood Hazard mapping assessment.

1.3 Study Area & Reach

Figure 1-1 summarizes the study area. As shown, the downstream end of this study reach is the confluence of Highwood River and Sheep River downstream of the Town of Okotoks. The upstream limit of the study reach is located approximately 60 km upstream of the Highwood confluence, just to the west of section 20-19-3-W5M. This is approximately 8 km southwest of Turner Valley. The Threepoint Creek study reach extends from its confluence with the Sheep River, 35 km upstream, to its confluence with Ware Creek (just to the northwest quarter of 23-20-04-W5M).

The 60 km Sheep River study reach includes the key points listed below. The stationing shown is listed in kilometers, as measured from the downstream end of the study reach and extending upstream.

- Confluence with the Highwood River km 0.0
- Highway 2 Bridge km 6.98
- Town of Okotoks between km 11.25 and km 17.45
- Confluence with Threepoint Creek km 34.52
- Town of Black Diamond between km 39.9 and km 42.5
- Town of Turner Valley between km 43.9 and km 48.2

The 35 km Threepoint Creek study reach includes the key points listed below.

- Confluence with the Sheep River km 0.0
- 192 Street W Bridge Crossing (in the vicinity of the Millarville Race Track) km 11.36
- Highway 22 Bridge Crossing (in the vicinity of the community of Millarville) km 20.2
- Confluence with Fisher Creek km 26.3
- Confluence with Ware Creek and upstream end of study area km 34.79

Alberta Environment and Parks Sheep River Flood Hazard Study H365186

Figure 1-1: Study Reach

2. Available Data

As a first step in this assessment, it was necessary to compile all readily available spatial data representing development in the study area. This included the collection of available cadastral data, infrastructure data, and census data. Each data source is further described below.

2.1 Flood Hydrology

Table 2-1 shows the maximum annual instantaneous discharge adopted for different return periods for the project area. These flows were applied to the hydraulic model at the locations described in the hydraulic model report. The 100-yr flood was adopted as the open water design flood hazard flood.

Alberta Environment and Parks Sheep River Flood Hazard Study H365186

Estimated Average Recurrence Interval (Years)	Sheep River at Black Diamond (05BL014)	Sheep River at Okotoks (05BL012)	Sheep River at Mouth (Node 344)	Threepoint + Ware Creek (Nodes 338 and 339)	Threepoint Creek at Millarville (05BL013)	Threepoint Creek at Mouth (Node 341)	Okotoks North of CPR
2	61.5	158	166	26.8	39.8	48.7	0.1*
5	148	338	355	58.1	98.2	118	0.1*
10	240	504	530	88.2	158	192	0.1*
20	361	701	737	125.3	235	290	0.1*
35	484	886	931	161.2	312	387	0.1*
50	576	1020	1070	187.4	368	457	0.1*
75	693	1180	1240	221	439	545	4
100	787	1300	1370	246	495	616	14
200	1050	1640	1720	317	650	810	18
350	1310	1950	2050	386	803	1000	52
500	1500	2180	2290	436	914	1140	85
750	1720	2420	2540	496	1040	1300	112
1000	1900	2620	2750	543	1140	1430	139

Table 2-1 – Annual maximum instantaneous discharge values applied to the model

* These values are placeholders, needed for the model to run - actual expected flows are zero.

The cadastral information required for the study includes recent data on building footprints and land parcels. This data has been provided by AEP.

Building footprint data were available for the town of Okotoks. This dataset covers potentially impacted areas in the community. Aerial photos have also been collected by AEP and were provided to complete this assessment. Google Earth aerial imagery and Bing Aerial Imagery (available through ARC-GIS) have been used to interpret building utilization where the AEP-supplied aerial photos were not clear or complete.

2.2 Survey and DTM Data

Digital Terrain Model (DTM) data was provided by AEP. LiDAR information was gathered in 2016 by AEP with a 0.5 m spacing. The horizontal accuracy of the LiDAR information at this resolution is generally within 20 cm and the vertical accuracy for bare earth information is about 10 to 20 cm.

All coordinate information and mapping is in three-degree Transverse Mercator (3TM) plane coordinates based on the Canadian Spatial Reference System 1983 North American Datum (NAD83 [CSRS]); vertical control is referenced to Canadian Geodetic Vertical Datum of 1928 (CGVD28).

Channel cross section survey data was collected and prepared by AFW and provided by AEP for use in this study. AFW's survey report has been finalized and is included in volume 1 of this study report. Both data sets were used to create the hydraulic model.

The aerial imagery has also been provided by AEP. There are two datasets available for the aerial imagery. The most recent dataset was gathered as a part of previous work completed by AFW and was finalized in 2016. AEP also provided an older dataset collected in the 1950's which was used to support other study components.

2.3 HEC-RAS Model

A one-dimensional model of the project reach was developed using the HEC-RAS program (Version 5.0.3) and current diking configurations in each community. The HEC-RAS model was set up to represent hydraulic conditions on an approximately 60 kilometer long reach of the Sheep River, and a 35 kilometer long reach of Threepoint Creek in the Municipal District of Foothills No. 31. This reach includes the Towns of Black Diamond, Turner Valley, Okotoks and the Hamlet of Millarville. The model was calibrated based on the available low flow, high flow, and rating curve data. Using the calibrated HEC-RAS model, surface water profiles were then simulated for the 2-, 5-, 10-, 20-, 35-, 50-, 75-, 100-, 200-, 350-, 500-, 750- and 1,000- year flood events. A detailed description of this work can be found in Volume 2 of the study.

3. Design Flood Hazard Determination

3.1 Design Flood

The 100-yr flood was selected as the open water design flood in accordance with the flood Hazard Identification Program (FHIP) Guidelines (AEP 2011).

3.2 Floodway and Flood Fringe Terminology

Flood Hazard Area

The flood hazard area is the area of land that would be flooded during the design flood. It is composed of the floodway and the flood fringe zones, which are defined below.

Flood Hazard Mapping

Flood hazard mapping identifies the area flooded for the design flood and is typically divided into floodway and flood fringe zones. Flood hazard maps can also show additional flood hazard information, including areas of high hazard within the flood fringe and incremental areas at risk for more severe floods, like the 200-year and 500-year floods. Flood hazard mapping is typically used for long-term flood hazard area management and land-use planning.

Floodway

When a floodway is first defined on a flood hazard map, it typically represents the area of highest flood hazard where flows are deepest, fastest, and most destructive during the 100-

year design flood . The floodway generally includes the main channel of a stream and a portion of the adjacent overbank area. Previously mapped floodways do not typically become larger when a flood hazard map is updated, even if the flood hazard area gets larger or design flood levels get higher, but there may be areas of high hazard outside of either an updated or newly-mapped floodway.

Flood Fringe

The flood fringe is the portion of the flood hazard area outside of the floodway. The flood fringe typically represents areas with shallower, slower, and less destructive flooding during the 100-year design flood. However, areas with deep or fast moving water may also be identified as high hazard flood fringe within the flood fringe. Areas at risk behind flood berms may also be mapped as protected flood fringe areas.

Design Flood Levels

Design flood levels are the computed water levels associated with the design flood.

3.3 Design Flood Profile

The final floodway stationing for each cross section on Threepoint Creek is summarized in **Table 3-1**. The final floodway stationing for each cross section on Sheep River is summarized in **Table 3-2**. **Table 3-3** and **Table 3-4** provide a summary of the design flood profiles for Threepoint Creek and Sheep River respectively.

Alberta Environment and Parks Sheep River Flood Hazard Study H365186

Reach	River	Left	Criteria	Right	Criteria
	Station	Floodway		Floodway	
	(km)	Station (m)		Station (m)	
US Millarville	34.48	3/3.6/	Depth	398.60	Depth
US Millarville	34.21	287.63	Velocity	361.57	Depth
US Millarville	34.11	291.46	Velocity	325.77	Velocity
US Millarville	33.621	159.99	Depth	242.23	Velocity
US Millarville	33.3	100.99	Depth	354.06	Depth
US Millarville	33.041	135.20	Depth	289.08	Depth
US Millarville	32.75	292.08	Depth	351.56	Depth
US Millarville	32.515	239.84	Depth	356.23	Depth
US Millarville	32.39	202.25	Depth	247.64	Depth
US Millarville	32.36	225.30	Depth	283.27	Velocity
US Millarville	32.16	206.50	Depth	229.68	Depth
US Millarville	31.95	29.41	Depth	61.42	Velocity
US Millarville	31.68	160.24	Velocity	209.89	Velocity
US Millarville	31.58	110.81	Depth	153.65	Velocity
US Millarville	31.454	108.65	Velocity	176.39	Velocity
US Millarville	31.3	24.30	Velocity	139.14	Velocity
US Millarville	31.03	19.53	Velocity	509.40	Depth
US Millarville	30.75	40.62	Depth	407.35	Depth
US Millarville	30.49	59.80	Depth	403.65	Depth
US Millarville	30.21	59.51	Velocity	324.83	Depth
US Millarville	30	18.71	Depth	197.04	Depth
US Millarville	29.85	25.65	Depth	390.60	Depth
US Millarville	29.61	28.64	Depth	427.95	Depth
US Millarville	29.31	270.61	Velocity	478.01	Depth
US Millarville	29.19	289.97	Velocity	381.51	Depth
US Millarville	29	261.37	Depth	353.47	Depth
US Millarville	28.77	259.35	Depth	296.91	Depth
US Millarville	28.36	291.24	Depth	517.24	Velocity
US Millarville	27.98	242.49	Depth	415.88	Depth
US Millarville	27.68	364.59	Depth	557.25	Depth
US Millarville	27.37	152.62	Depth	278.03	Depth
US Millarville	26.86	187.35	Depth	217.92	Depth
US Millarville	26.51	67.62	Velocity	92.78	Velocity
US Millarville	26.2	869.96	Depth	1502.17	Depth
US Millarville	25.93	195.51	Depth	819.59	Depth

Table 3-1 – Floodway Limit Stations and Governing Criteria – Threepoint Creek

Station (km)Floodway Station (m)Floodway Station (m)US Millarville25.52326.39Depth865.93US Millarville25.32176.69Depth643.43DepthUS Millarville25.13188.25Depth550.53DepthUS Millarville24.85151.86Depth761.84Depth
(km) Station (m) Station (m) US Millarville 25.52 326.39 Depth 865.93 Depth US Millarville 25.32 176.69 Depth 643.43 Depth US Millarville 25.13 188.25 Depth 550.53 Depth US Millarville 24.85 151.86 Depth 761.84 Depth
US Millarville 25.32 320.39 Depth 603.93 Depth US Millarville 25.32 176.69 Depth 643.43 Depth US Millarville 25.13 188.25 Depth 550.53 Depth US Millarville 24.85 151.86 Depth 761.84 Depth
US Millarville 25.32 178.69 Depth 643.43 Depth US Millarville 25.13 188.25 Depth 550.53 Depth US Millarville 24.85 151.86 Depth 761.84 Depth
US Millarville 25.13 188.25 Depth 550.53 Depth US Millarville 24.85 151.86 Depth 761.84 Depth
US Millarville 24.85 151.86 Depth 761.84 Depth
US Millarville 24.73 64.64 Depth 697.79 Depth
US Millarville 24.56 63.47 Depth 737.79 Velocity
US Millarville 24.33 31.57 Depth 759.64 Velocity
US Millarville 23.97 394.68 Depth 785.20 Velocity
US Millarville 23.72 348.28 Depth 830.11 Depth
US Millarville 23.37 276.36 Depth 883.25 Depth
US Millarville 23.02 305.70 Depth 844.71 Depth
US Millarville 22.71 437.07 Depth 916.56 Depth
US Millarville 22.41 463.04 Depth 933.88 Depth
US Millarville 22.07 335.63 Depth 1102.67 Depth
US Millarville 21.78 489.22 Depth 1365.51 Depth
US Millarville 21.51 710.29 Depth 1266.38 Depth
US Millarville 21.23 672.97 Depth 1117.39 Depth
US Millarville 20.95 743.32 Velocity 1039.60 Velocity
US Millarville 20.72 50.14 Depth 833.90 Depth
US Millarville 20.44 39.97 Depth 780.27 Depth
US Millarville 20.344 61.13 Depth 904.72 Depth
US Millarville 20.216 56.24 Depth 998.11 Depth
US Millarville 20.17 89.78 Depth 1033.48 Depth
US Millarville 19.98 176.95 Depth 1176.27 Depth
US Millarville 19.95 143.88 Depth 1237.81 Depth
US Millarville 19.73 137.85 Depth 998.69 Depth
US Millarville 19.49 132.12 Depth 971.44 Depth
US Millarville 19.35 114.35 Depth 937.35 Depth
US Millarville 18.43 68.98 Depth 730.07 Depth
US Millarville 18.229 30.52 Depth 649.46 Depth
US Millarville 18.071 21.38 Depth 682.57 Depth
US Millarville 17.8 24.65 Depth 605.87 Depth
US Millarville 17.68 100.66 Depth 609.05 Depth
US Millarville 17.54 92.76 Depth 681.85 Depth
US Millarville 17.31 109.99 Depth 723.75 Velocity
US Millarville 16.87 147.56 Depth 952.59 Depth
US Millarville 16.63 183.96 Depth 776.51 Velocity

	i tigitti ontona
Station Floodway	Floodway
(KM) Station (M)	Station (m)
US Millarville 16.44 130.01 D	eptil 069.55 Deptil
US Millarville 16.15 233.32 D	eptri 761.62 Deptri
US Millarville 15.93 178.13 D	epth 802.84 Depth
US Millarville 15.74 245.88 D	eptn 736.24 Deptn
US Millarville 15.34 200.20 D	eptn 702.47 Deptn
US Millarville 14.98 15.11 D	epth 366.42 Depth
US Millarville 14.88 241.03 D	epth 517.66 Depth
US Millarville 14.74 262.34 D	epth 601.70 Depth
US Millarville 14.47 246.18 D	epth 731.93 Depth
US Millarville 14.33 247.88 D	epth 913.25 Depth
US Millarville 14.11 259.65 D	epth 924.13 Depth
US Millarville 14.02 210.16 D	epth 991.02 Depth
US Millarville 13.821 180.61 D	epth 1099.38 Depth
US Millarville 13.6 15.28 Velo	ocity 937.21 Depth
US Millarville 13.45 12.53 D	epth 1005.25 Depth
US Millarville 13.3 10.17 Velo	ocity 920.87 Depth
US Millarville 12.94 88.72 D	epth 751.52 Depth
US Millarville 12.69 48.46 D	epth 551.79 Depth
US Millarville 12.4 15.63 Velo	ocity 604.78 Depth
US Millarville 12.12 72.95 D	epth 335.91 Depth
US Millarville 11.91 25.89 D	epth 214.03 Depth
US Millarville 11.72 112.90 D	epth 384.37 Depth
US Millarville 11.42 43.42 D	epth 245.76 Depth
US Millarville 11.13 232.63 Velo	ocity 282.42 Velocity
US Millarville 11.09 206.98 Velo	ocity 301.58 Velocity
US Millarville 10.79 1160.92 D	epth 1220.12 Depth
US Millarville 10.36 712.03 D	epth 759.77 Depth
US Millarville 10.01 811.54 D	epth 1231.72 Depth
US Millarville 9.73 493.83 D	epth 1098.38 Depth
US Millarville 9.44 346.14 D	epth 965.82 Depth
US Millarville 9.11 588.35 D	epth 1241.23 Depth
US Millarville 8.81 280.59 D	epth 999.78 Depth
US Millarville 8.65 74.86 D	epth 725.21 Depth
US Millarville 8.46 335.00 D	epth 974.38 Depth
US Millarville 8.28 358.70 D	epth 939.40 Depth
US Millarville 8.06 389.43 D	epth 1068.19 Depth
US Millarville 7.89 370.63 D	epth 1075.34 Depth

Reach	River	Left	Criteria	Right	Criteria
	Station	Floodway		Floodway	
	(km)	Station (m)		Station (m)	
US Millarville	7.65	330.33	Depth	1115.27	Depth
US Millarville	7.33	105.73	Depth	984.71	Depth
US Millarville	7.021	81.61	Depth	950.86	Depth
US Millarville	6.82	73.86	Depth	1069.03	Depth
US Millarville	6.44	111.16	Depth	876.69	Depth
US Millarville	6.14	222.65	Depth	872.16	Depth
US Millarville	5.85	66.95	Depth	619.05	Depth
US Millarville	5.55	72.53	Depth	718.17	Depth
US Millarville	5.25	93.81	Depth	747.34	Depth
US Millarville	4.9	129.29	Depth	454.36	Depth
US Millarville	4.66	90.25	Depth	266.42	Depth
US Millarville	4.33	238.43	Depth	374.13	Depth
US Millarville	4.29	300.22	Depth	425.89	Depth
US Millarville	4.05	257.68	Depth	812.47	Depth
US Millarville	3.932	285.42	Depth	930.62	Depth
US Millarville	3.79	213.41	Depth	877.66	Depth
US Millarville	3.67	202.76	Depth	875.39	Velocity
US Millarville	3.47	119.35	Depth	962.66	Depth
US Millarville	3.15	117.78	Depth	1112.67	Velocity
US Millarville	2.77	160.58	Depth	967.16	Depth
US Millarville	2.56	98.77	Depth	413.13	Depth
US Millarville	2.38	56.85	Velocity	326.80	Depth
US Millarville	2.17	76.16	Depth	373.72	Depth
US Millarville	1.98	155.42	Depth	321.49	Depth
US Millarville	1.715	202.74	Depth	289.51	Depth
US Millarville	1.42	252.85	Depth	379.21	Depth
US Millarville	1.22	70.42	Depth	166.69	Velocity
US Millarville	1.01	49.55	Depth	183.44	Depth
US Millarville	0.81	126.13	Depth	See N	ote 1
US Millarville	0.63	173.43	Depth	See N	ote 1
US Millarville	0.48	159.09	Depth	See N	ote 1
US Millarville	0.2	81.58	Depth	See Note 1	

NOTE 1: This cross section only includes one side of the floodway. Please refer to the Floodway Criteria Maps Sheets 7 to 9 to identify opposite floodway station.

Alberta Environment and Parks Sheep River Flood Hazard Study H365186

Reach	River	Left	Criteria	Right	Criteria
	Station	Floodway		Floodway	
	(km)	Station (m)		Station (m)	
US Threepoint	59.66	22.2	Depth	63.9	Depth
US Threepoint	59.46	35.7	Depth	88.8	Depth
US Threepoint	59.23	6.2	Velocity	101.8	Depth
US Threepoint	59	58.5	Depth	126.7	Depth
US Threepoint	58.69	29.5	Depth	139.6	Depth
US Threepoint	58.33	37.0	Depth	191.6	Depth
US Threepoint	58.08	29.0	Depth	180.7	Velocity
US Threepoint	57.82	27.5	Velocity	173.5	Depth
US Threepoint	57.56	21.5	Depth	176.5	Depth
US Threepoint	57.32	11.6	Depth	59.9	Depth
US Threepoint	57.04	23.0	Depth	60.4	Velocity
US Threepoint	56.53	23.9	Depth	68.8	Depth
US Threepoint	56.353	20.1	Depth	158.1	Depth
US Threepoint	56.12	23.1	Depth	62.4	Depth
US Threepoint	55.74	59.6	Depth	100.2	Depth
US Threepoint	55.47	90.3	Velocity	145.0	Depth
US Threepoint	55.27	36.4	Depth	91.4	Velocity
US Threepoint	55.08	46.2	Velocity	136.4	Velocity
US Threepoint	54.55	70.0	Depth	129.1	Velocity
US Threepoint	54.33	18.8	Depth	175.2	Velocity
US Threepoint	54.1	50.0	Depth	145.6	Depth
US Threepoint	53.67	86.1	Depth	200.3	Depth
US Threepoint	53.35	101.1	Depth	175.8	Depth
US Threepoint	52.95	97.5	Depth	206.3	Depth
US Threepoint	52.7	139.9	Depth	328.6	Depth
US Threepoint	52.4	192.4	Depth	291.2	Depth
US Threepoint	52.1	145.8	Depth	351.4	Depth
US Threepoint	51.74	37.6	Depth	238.2	Depth
US Threepoint	51.44	235.4	Depth	387.1	Depth
US Threepoint	51.17	221.6	Depth	323.3	Depth
US Threepoint	50.96	31.8	Depth	181.9	Depth
US Threepoint	50.606	100.0	Depth	296.4	Depth
US Threepoint	50.51	62.0	Depth	153.2	Depth
US Threepoint	50.21	30.4	Velocity	102.2	Depth
US Threepoint	49.83	74.4	Depth	135.9	Velocity

Table 3-2 – Floodway Limit Stations and Governing Criteria – Sheep River

Reach	River Station	Left Floodwav	Criteria	Right Floodwav	Criteria
	(km)	Station (m)		Station (m)	
US Threepoint	49.54	46.8	Depth	187.9	Depth
US Threepoint	49.18	44.3	Depth	117.1	Depth
US Threepoint	48.94	41.6	Depth	96.1	Depth
US Threepoint	48.69	31.8	Depth	74.8	Depth
US Threepoint	48.44	118.2	Depth	182.2	Depth
US Threepoint	48.19	58.5	Velocity	111.3	Velocity
US Threepoint	48.15	103.1	Velocity	143.6	Depth
US Threepoint	48.08	54.5	Depth	110.3	Depth
US Threepoint	47.92	94.9	Orig Floodway	327.7	Depth
US Threepoint	47.88	25.8	Orig Floodway	168.4	Orig Floodway
US Threepoint	47.62	34.0	Depth	99.3	Orig Floodway
US Threepoint	47.35	20.9	Orig Floodway	137.9	Depth
US Threepoint	47.08	50.2	Depth	135.9	Orig Floodway
US Threepoint	46.78	130.6	Depth	244.7	Depth
US Threepoint	46.63	268.9	Orig Floodway	453.1	Depth
US Threepoint	46.46	355.3	Orig Floodway	565.3	Depth
US Threepoint	46.2	154.4	Orig Floodway	306.2	Orig Floodway
US Threepoint	46.1	142.8	Orig Floodway	262.5	Depth
US Threepoint	46.06	172.3	Flood Structure	225.7	Flood Structure
US Threepoint	46.01	133.2	Flood Structure	210.9	Depth
US Threepoint	45.97	92.9	Orig Floodway	144.6	Flood Structure
US Threepoint	45.94	119.6	Orig Floodway	177.8	Depth
US Threepoint	45.88	141.5	Flood Structure	229.2	Orig Floodway
US Threepoint	45.73	185.5	Orig Floodway	274.4	Orig Floodway
US Threepoint	45.53	290.4	Flood Structure	396.9	Depth
US Threepoint	45.29	341.8	Flood Structure	413.4	Depth
US Threepoint	45.05	331.8	Depth	519.0	Orig Floodway
US Threepoint	44.78	99.2	Orig Floodway	368.4	Orig Floodway
US Threepoint	44.41	154.2	Orig Floodway	265.3	Orig Floodway
US Threepoint	44.13	191.5	Orig Floodway	277.6	Orig Floodway
US Threepoint	44	103.9	Depth	191.3	Orig Floodway
US Threepoint	43.91	122.2	Orig Floodway	218.6	Orig Floodway
US Threepoint	43.47	218.2	Orig Floodway	545.1	Orig Floodway
US Threepoint	43.28	249.9	Depth	553.0	Depth
US Threepoint	43.04	198.9	Depth	696.1	Orig Floodway
US Threepoint	42.82	113.8	Depth	591.7	Orig Floodway
US Threepoint	42.62	133.1	Orig Floodway	490.2	Orig Floodway

Reach	River Station	Left Floodway	Criteria	Right Floodway	Criteria	
	(km)	Station (m)		Station (m)		
US Threepoint	42.45	51.6	Depth	291.6	Mixed	
US Threepoint	42.29	54.5	Orig Floodway	209.5	Mixed	
US Threepoint	42.24	82.2	Orig Floodway	145.4	Mixed	
US Threepoint	42.21	207.7	Orig Floodway	258.2	Orig Floodway	
US Threepoint	42.12	152.5	Orig Floodway	329.3	Orig Floodway	
US Threepoint	41.94	290.1	Depth	405.7	Orig Floodway	
US Threepoint	41.8	387.5	Orig Floodway	559.7	Orig Floodway	
US Threepoint	41.63	540.0	Orig Floodway	673.8	Orig Floodway	
US Threepoint	41.36	432.1	Orig Floodway	753.9	Orig Floodway	
US Threepoint	41.13	317.0	Orig Floodway	672.1	Orig Floodway	
US Threepoint	40.81	468.2	Depth	677.7	Depth	
US Threepoint	40.51	618.0	Orig Floodway	895.6	Depth	
US Threepoint	40.23	521.9	Depth	1169.3	Orig Floodway	
US Threepoint	39.85	615.1	Depth	903.4	Depth	
US Threepoint	39.5	187.6	Depth	995.8	Depth	
US Threepoint	39.23	49.8	Depth	861.0	Depth	
US Threepoint	39.12	43.8	Depth	776.8	Depth	
US Threepoint	38.84	37.5	Depth	471.7	Depth	
US Threepoint	38.65	12.2	Depth	397.7	Depth	
US Threepoint	38.35	13.0	Depth	409.1	Depth	
US Threepoint	38.17	58.8	Depth	567.3	Depth	
US Threepoint	37.99	55.7	Depth	708.5	Depth	
US Threepoint	37.74	40.0	Velocity	785.7	Depth	
US Threepoint	37.58	53.0	Depth	579.5	Depth	
US Threepoint	37.4	176.6	Depth	626.5	Depth	
US Threepoint	37.25	72.7	Depth	Se	ee Note 1	
US Threepoint	36.93	105.3	Depth	Se	ee Note 1	
US Threepoint	36.64	268.5	Depth	See Note 1		
US Threepoint	36.534	266.2	Depth	See Note 1		
US Threepoint	36.31	282.9	Depth	See Note 1		
US Threepoint	35.91	185.0	Depth See Note 1			
US Threepoint	35.61	115.0 Depth See Note 1				
US Threepoint	35.37	See Note 2				
US Threepoint	35.27	See Note 2				
US Threepoint	35.02	See Note 2				
US Threepoint	34.89	See Note 2				
128 St Overflow	0.12	S	ee Note 1	375.0	Velocity	

Reach	River Station	Left Floodway	Criteria	Right Floodway	Criteria
	(km)	Station (m)		Station (m)	
128 St Overflow	0.23	S	ee Note 1	386.3	Velocity
128 St Overflow	0.28	S	ee Note 1	480.5	Velocity
128 St Overflow	0.31	S	ee Note 1	467.6	Velocity
128 St Overflow	0.43	S	ee Note 1	409.7	Depth
128 St Overflow	0.53	S	ee Note 1	289.7	Velocity
128 St Overflow	0.70	S	ee Note 1	217.7	Depth
128 St Overflow	0.94	Se	ee Note 1	258.1	Velocity
128 St Overflow	1.21	Se	ee Note 1	181.0	Velocity
128 St Overflow	1.24	Se	ee Note 1	201.9	Depth
128 St Overflow	1.32	Se	ee Note 1	529.6	Depth
128 St Overflow	1.42	Se	ee Note 1	424.6	Depth
128 St Overflow	1.56	Se	ee Note 1	243.8	Depth
128 St Overflow	1.71	Se	ee Note 1	249.3	Depth
128 St Overflow	2.05	Se	ee Note 1	280.4	Depth
128 St Overflow	2.16	Se	ee Note 1	306.0	Depth
128 St Overflow	2.23	S	ee Note 1	157.5	Velocity
128 St Overflow	2.33	Se	ee Note 1	155.0	Depth
128 St Overflow	2.39	S	See Note 1		Depth
128 St Overflow	2.46	S	ee Note 1	97.8	Depth
128 St Overflow	2.53	Se	ee Note 1	118.6	Depth
128 St Overflow	2.57	S	ee Note 1	124.4	Depth
128 St Overflow	2.67	Se	ee Note 1	171.8	Depth
128 St Overflow	2.72	Se	ee Note 1	214.5	Depth
128 St Overflow	2.78	S	ee Note 1	228.9	Depth
DS Threepoint	34.28	48.9	Velocity	Se	ee Note 1
DS Threepoint	34.12	30.3	Velocity	Se	ee Note 1
DS Threepoint	33.83	23.5	Velocity	Se	ee Note 1
DS Threepoint	33.62	22.5	Depth	Se	ee Note 1
DS Threepoint	33.44	18.2	Depth	Se	ee Note 1
DS Threepoint	33.23	44.1	Depth	Se	ee Note 1
DS Threepoint	33.04	12.2	Depth	Se	ee Note 1
DS Threepoint	32.89	11.0	Depth	Se	ee Note 1
DS 128 Street	32.68	7.9	Velocity	373.8	Depth
DS 128 Street	32.51	32.9	Depth	503.7	Depth
DS 128 Street	32.32	84.7	Depth	594.9	Depth
DS 128 Street	32	68.2	Depth	570.4	Depth
DS 128 Street	31.63	51.3	Depth	698.5	Depth

Reach	River Station	Left Floodway	Criteria	Right Floodway	Criteria
	(km)	Station (m)		Station (m)	
DS 128 Street	31.27	25.1	Depth	857.2	Depth
DS 128 Street	30.87	24.4	Depth	990.0	Depth
DS 128 Street	30.44	134.2	Depth	1010.0	Depth
DS 128 Street	30.09	258.1	Depth	1080.7	Depth
DS 128 Street	29.73	450.1	Depth	1166.9	Depth
DS 128 Street	29.463	736.3	Depth	1466.5	Depth
DS 128 Street	29.12	570.9	Depth	1414.0	Depth
DS 128 Street	28.89	404.3	Depth	1424.7	Depth
DS 128 Street	28.66	428.3	Depth	1374.2	Velocity
DS 128 Street	28.38	380.4	Depth	1334.4	Depth
DS 128 Street	28.02	279.5	Velocity	1276.2	Depth
DS 128 Street	27.79	128.4	Depth	1427.5	Depth
DS 128 Street	27.53	140.4	Depth	1204.4	Depth
DS 128 Street	27.25	126.6	Depth	1125.1	Depth
DS 128 Street	26.88	390.3	Depth	1056.7	Depth
DS 128 Street	26.47	484.8	Velocity	1176.1	Velocity
DS 128 Street	26.24	396.1	Depth	1107.5	Depth
DS 128 Street	25.82	543.2	Depth	1197.4	Depth
DS 128 Street	25.5	631.7	Depth	1326.3	Depth
DS 128 Street	25.21	675.6	Depth	1313.6	Depth
DS 128 Street	24.99	847.4	Depth	1718.2	Depth
DS 128 Street	24.78	846.6	Depth	1731.4	Depth
DS 128 Street	24.54	957.4	Depth	1696.5	Depth
DS 128 Street	24.4	877.8	Depth	1649.4	Depth
DS 128 Street	24.12	852.1	Depth	1613.4	Depth
DS 128 Street	23.85	874.9	Depth	1424.5	Depth
DS 128 Street	23.58	851.1	Depth	1267.2	Depth
DS 128 Street	23.27	838.2	Depth	1159.8	Depth
DS 128 Street	22.98	630.9	Depth	1007.6	Depth
DS 128 Street	22.77	487.9	Depth	864.4	Depth
DS 128 Street	22.46	309.7	Depth	701.7	Depth
DS 128 Street	22.17	35.1	Depth	352.6	Depth
DS 128 Street	21.85	92.9	Depth	386.7	Depth
DS 128 Street	21.8	108.2	Depth	362.6	Depth
DS 128 Street	21.49	587.2	Depth	733.2	Depth
DS 128 Street	21.06	856.1	Depth	1014.8	Depth
DS 128 Street	20.81	1108.0	Depth	1527.9	Depth

Reach	River Station	Left Floodway	Criteria	Right Floodway	Criteria
	(km)	Station (m)		Station (m)	
DS 128 Street	20.69	815.2	Depth	1408.3	Depth
DS 128 Street	20.41	305.3	Velocity	1026.7	Depth
DS 128 Street	20.09	38.0	Depth	651.1	Depth
DS 128 Street	19.71	44.9	Velocity	332.7	Velocity
DS 128 Street	19.29	41.7	Depth	382.5	Depth
DS 128 Street	18.99	37.6	Depth	399.1	Depth
DS 128 Street	18.69	81.8	Depth	622.0	Depth
DS 128 Street	18.34	77.4	Depth	943.9	Mixed
DS 128 Street	18.206	480.9	Depth	1335.2	Mixed
DS 128 Street	18.15	791.4	Depth	1519.9	Mixed
DS 128 Street	18.07	324.0	Depth	1022.3	Depth
DS 128 Street	18.01	62.3	Depth	1038.6	Depth
DS 128 Street	17.65	414.0	Orig Floodway	836.5	Orig Floodway
DS 128 Street	17.45	354.9	Orig Floodway	705.5	Orig Floodway
DS 128 Street	17.22	240.7	Orig Floodway	569.9	Orig Floodway
DS 128 Street	17.04	56.0	Orig Floodway	414.9	Orig Floodway
DS 128 Street	16.77	20.3	Orig Floodway	513.8	Orig Floodway
DS 128 Street	16.45	59.9	Orig Floodway	466.3	Orig Floodway
DS 128 Street	16.22	174.0	Orig Floodway	455.7	Orig Floodway
DS 128 Street	16.07	243.5	Orig Floodway	461.2	Orig Floodway
DS 128 Street	15.95	283.1	Orig Floodway	621.3	Mixed
DS 128 Street	15.91	296.1	Orig Floodway	543.7	Mixed
DS 128 Street	15.883	299.0	Orig Floodway	407.8	Orig Floodway
DS 128 Street	15.86	284.0	Orig Floodway	391.5	Orig Floodway
DS 128 Street	15.73	207.0	Orig Floodway	426.0	Orig Floodway
DS 128 Street	15.56	120.8	Mixed	496.4	Orig Floodway
DS 128 Street	15.4	90.6	Mixed	497.7	Orig Floodway
DS 128 Street	15.36	109.7	Mixed	511.3	Orig Floodway
DS 128 Street	15.35	123.9	Mixed	525.3	Orig Floodway
DS 128 Street	15.24	87.3	Mixed	508.9	Orig Floodway
DS 128 Street	15.17	82.5	Mixed	503.1	Orig Floodway
DS 128 Street	15.06	101.9	Mixed	523.0	Orig Floodway
DS 128 Street	14.92	136.7	Mixed	608.2	Orig Floodway
DS 128 Street	14.78	98.8	Mixed	622.1	Orig Floodway
DS 128 Street	14.62	104.5	Mixed	578.3	Mixed
DS 128 Street	14.45	166.6	Mixed	596.3	Mixed
DS 128 Street	14.25	179.6	Mixed	636.7	Mixed

Reach	River Station	Left Floodway	Criteria	Right Floodway	Criteria
	(km)	Station (m)		Station (m)	
DS 128 Street	14.04			641.2	
	40.00	2.7	Mixed		Mixed
DS 128 Street	13.82	7.3	Mixed	679.4	Mixed
DS 128 Street	13.65	3.4	Mixed	565.4	Mixed
DS 128 Street	13.48	8.8	Mixed	422.6	Mixed
DS 128 Street	13.25	11.6	Mixed	259.7	Mixed
DS 128 Street	13.13	70.5	Mixed	170.3	Mixed
DS 128 Street	13.12	78.8	Mixed	355.1	Mixed
DS 128 Street	13.01	366.9	Orig Floodway	641.6	Mixed
DS 128 Street	12.85	195.4	Orig Floodway	586.2	Mixed
DS 128 Street	12.75	200.4	Orig Floodway	619.4	Mixed
DS 128 Street	12.73	270.9	Orig Floodway	381.0	Orig Floodway
DS 128 Street	12.64	98.4	Orig Floodway	387.6	Orig Floodway
DS 128 Street	12.554	150.0	Orig Floodway	651.7	Orig Floodway
DS 128 Street	12.47	246.4	Orig Floodway	708.7	Orig Floodway
DS 128 Street	12.343	336.9	Orig Floodway	725.7	Orig Floodway
DS 128 Street	12.25	269.5	Orig Floodway	725.5	Orig Floodway
DS Okotoks	12.02	62.5	Depth	782.4	Depth
DS Okotoks	11.90	110.0	Depth	893.3	Depth
DS Okotoks	11.75	126.6	Depth	826.2	Depth
DS Okotoks	11.54	100.3	Depth	912.7	Depth
DS Okotoks	11.47	140.8	Depth	905.9	Depth
DS Okotoks	11.25	78.1	Depth	705.4	Depth
DS Okotoks	10.93	12.1	Depth	658.0	Depth
DS Okotoks	10.63	50.4	Depth	654.1	Depth
DS Okotoks	10.45	43.5	Velocity	561.8	Depth
DS Okotoks	10.15	28.3	Depth	410.4	Depth
DS Okotoks	9.87	87.8	Depth	364.9	Depth
DS Okotoks	9.58	271.7	Depth	635.2	Depth
DS Okotoks	9.31	359.9	Depth	538.6	Depth
DS Okotoks	9.09	124.2	Depth	446.6	Depth
DS Okotoks	8.79	96.2	Depth	484.1	Depth
DS Okotoks	8.44	60.1	Depth	535.4	Depth
DS Okotoks	8.20	47.8	Depth	497.8	Depth
DS Okotoks	7.94	182.0	Depth	433.8	Depth
DS Okotoks	7.71	53.2	Depth	321.1	Depth

Reach	River	Left	Criteria	Right	Criteria
	Station	Floodway		Floodway	
DS Okotoks	(KM) 7.52	Station (m)	Depth	Station (m)	Depth
DS Okotoks	7.32	20.1	Velocity	213.3	Depth
DS Okotoks	7.30	12.2	Depth	205.0	Depth
DS Okotoks	7.13	271 7	Depth	5/6 9	Depth
DS Okotoks	6.98	271.7	Depth	320.3	Depth
DS Okotoks	6.94	221.0	Depth	358 5	Depth
DS Okotoks	6.85	188.5	Depth	465.5	Depth
DS Okotoks	6.60	256.9	Depth	549.1	Depth
DS Okotoks	6.32	329.3	Depth	632.7	Depth
DS Okotoks	6.01	276.1	Depth	636.2	Depth
DS Okotoks	5.77	291.0	Depth	593.2	Depth
DS Okotoks	5.59	330.8	Depth	593.5	Velocity
DS Okotoks	5.29	157.5	Depth	388.0	Depth
DS Okotoks	5.16	127.2	Depth	372.8	Depth
DS Okotoks	5.00	61.9	Depth	281.1	Velocity
DS Okotoks	4.83	22.8	Depth	245.2	Depth
DS Okotoks	4.64	131.7	Depth	358.0	Depth
DS Okotoks	4.40	182.8	Depth	380.2	Velocity
DS Okotoks	4.00	107.2	Depth	295.9	Depth
DS Okotoks	3.64	80.2	Depth	217.7	Depth
DS Okotoks	3.25	15.0	Velocity	137.4	Depth
DS Okotoks	2.98	22.3	Depth	160.0	Depth
DS Okotoks	2.74	42.6	Depth	178.2	Depth
DS Okotoks	2.55	78.6	Velocity	215.3	Depth
DS Okotoks	2.37	35.9	Depth	103.5	Depth
DS Okotoks	1.99	99.8	Depth	244.6	Depth
DS Okotoks	1.70	321.1	Depth	395.9	Velocity
DS Okotoks	1.40	409.7	Depth	507.3	Depth
DS Okotoks	1.12	427.0	Depth	548.1	Depth
DS Okotoks	0.87	266.5	Depth	413.0	Depth
DS Okotoks	0.65	21.4	Depth	165.3	Depth
DS Okotoks	0.53	21.9	Velocity	120.0	Velocity
DS Okotoks	0.24	186.1	Depth	264.6	Depth
DS Okotoks	0.01	475.8	Depth	545.1	Depth

NOTE 1: This cross section only includes one side of the floodway. Please refer to the Floodway Criteria Maps Sheets 7 to 9 to identify opposite floodway station.

NOTE 2: This cross section is entirely contained within the floodway. Please refer to the Floodway Criteria Maps Sheets 7 to 9 to identify opposite floodway station.

River	Reach	River	Min Channel	WSE (m) for
		Station	El. (m)	100-year
		(km)		Flood
Threepoint Creek	US Millarville	34.48	1262.61	1265.47
Threepoint Creek	US Millarville	34.21	1261.47	1264.08
Threepoint Creek	US Millarville	34.11	1259.44	1263.42
Threepoint Creek	US Millarville	33.62	1258.73	1260.65
Threepoint Creek	US Millarville	33.30	1255.94	1258.84
Threepoint Creek	US Millarville	33.04	1254.46	1257.30
Threepoint Creek	US Millarville	32.75	1252.75	1255.01
Threepoint Creek	US Millarville	32.51	1250.37	1253.92
Threepoint Creek	US Millarville	32.39	1250.42	1253.57
Threepoint Creek	US Millarville	32.36	1250.18	1252.95
Threepoint Creek	US Millarville	32.16	1247.39	1250.87
Threepoint Creek	US Millarville	31.95	1246.32	1249.80
Threepoint Creek	US Millarville	31.68	1245.60	1248.32
Threepoint Creek	US Millarville	31.58	1245.09	1247.79
Threepoint Creek	US Millarville	31.45	1244.59	1247.01
Threepoint Creek	US Millarville	31.30	1243.81	1246.14
Threepoint Creek	US Millarville	31.03	1242.70	1244.71
Threepoint Creek	US Millarville	30.75	1241.11	1242.70
Threepoint Creek	US Millarville	30.49	1238.52	1240.82
Threepoint Creek	US Millarville	30.21	1237.09	1239.55
Threepoint Creek	US Millarville	30.00	1236.17	1238.41
Threepoint Creek	US Millarville	29.85	1235.56	1237.68
Threepoint Creek	US Millarville	29.61	1234.16	1235.48
Threepoint Creek	US Millarville	29.31	1231.30	1233.15
Threepoint Creek	US Millarville	29.19	1230.10	1232.38
Threepoint Creek	US Millarville	29.00	1228.70	1231.19
Threepoint Creek	US Millarville	28.77	1227.52	1229.98
Threepoint Creek	US Millarville	28.36	1225.14	1227.48
Threepoint Creek	US Millarville	27.98	1222.67	1224.47
Threepoint Creek	US Millarville	27.68	1219.62	1222.15
Threepoint Creek	US Millarville	27.37	1218.07	1220.33

Table 3-3 – Design Flood Profile for Threepoint Creek

River	Reach	River Station	Min Channel El. (m)	WSE (m) for 100-vear
		(km)		Flood
Threepoint Creek	US Millarville	26.86	1214.52	1216.78
Threepoint Creek	US Millarville	26.51	1212.71	1214.05
Threepoint Creek	US Millarville	26.20	1210.93	1211.99
Threepoint Creek	US Millarville	25.93	1209.44	1210.56
Threepoint Creek	US Millarville	25.52	1206.76	1209.03
Threepoint Creek	US Millarville	25.32	1205.39	1208.16
Threepoint Creek	US Millarville	25.13	1204.64	1207.41
Threepoint Creek	US Millarville	24.85	1203.53	1205.76
Threepoint Creek	US Millarville	24.73	1203.16	1205.45
Threepoint Creek	US Millarville	24.56	1201.71	1204.63
Threepoint Creek	US Millarville	24.33	1200.62	1203.94
Threepoint Creek	US Millarville	23.97	1199.59	1202.24
Threepoint Creek	US Millarville	23.72	1197.59	1201.17
Threepoint Creek	US Millarville	23.37	1195.92	1199.63
Threepoint Creek	US Millarville	23.02	1195.41	1198.64
Threepoint Creek	US Millarville	22.71	1194.04	1196.55
Threepoint Creek	US Millarville	22.41	1192.35	1195.33
Threepoint Creek	US Millarville	22.07	1191.27	1193.19
Threepoint Creek	US Millarville	21.78	1190.10	1191.63
Threepoint Creek	US Millarville	21.51	1188.74	1190.67
Threepoint Creek	US Millarville	21.23	1187.49	1189.43
Threepoint Creek	US Millarville	20.95	1186.27	1188.74
Threepoint Creek	US Millarville	20.72	1185.15	1188.24
Threepoint Creek	US Millarville	20.44	1184.53	1187.21
Threepoint Creek	US Millarville	20.34	1184.18	1186.98
Threepoint Creek	US Millarville	20.22	1183.57	1186.55
Threepoint Creek	US Millarville	20.17	1183.15	1186.58
Threepoint Creek	US Millarville	19.98	1182.35	1186.58
Threepoint Creek	US Millarville	19.95	1181.88	1185.92
Threepoint Creek	US Millarville	19.73	1182.52	1183.54
Threepoint Creek	US Millarville	19.49	1180.81	1183.19
Threepoint Creek	US Millarville	19.35	1181.31	1182.69
Threepoint Creek	US Millarville	18.43	1178.94	1181.97
Threepoint Creek	US Millarville	18.23	1178.14	1181.68
Threepoint Creek	US Millarville	18.07	1177.60	1180.79
Threepoint Creek	US Millarville	17.80	1177.34	1179.94
Threepoint Creek	US Millarville	17.68	1177.32	1179.56

River	Reach	River Station	Min Channel El. (m)	WSE (m) for 100-vear
		(km)		Flood
Threepoint Creek	US Millarville	17.54	1176.98	1179.33
Threepoint Creek	US Millarville	17.31	1175.89	1178.65
Threepoint Creek	US Millarville	16.87	1175.35	1178.39
Threepoint Creek	US Millarville	16.63	1173.80	1177.85
Threepoint Creek	US Millarville	16.44	1174.30	1177.56
Threepoint Creek	US Millarville	16.15	1174.41	1176.89
Threepoint Creek	US Millarville	15.93	1173.60	1176.15
Threepoint Creek	US Millarville	15.74	1172.42	1175.67
Threepoint Creek	US Millarville	15.34	1172.23	1175.10
Threepoint Creek	US Millarville	14.98	1170.52	1174.16
Threepoint Creek	US Millarville	14.88	1170.26	1174.07
Threepoint Creek	US Millarville	14.74	1169.53	1173.27
Threepoint Creek	US Millarville	14.47	1168.99	1172.26
Threepoint Creek	US Millarville	14.33	1168.12	1171.58
Threepoint Creek	US Millarville	14.11	1167.47	1170.43
Threepoint Creek	US Millarville	14.02	1167.43	1170.03
Threepoint Creek	US Millarville	13.82	1165.94	1169.92
Threepoint Creek	US Millarville	13.60	1165.08	1169.09
Threepoint Creek	US Millarville	13.45	1164.75	1169.03
Threepoint Creek	US Millarville	13.30	1164.30	1168.85
Threepoint Creek	US Millarville	12.94	1163.09	1166.87
Threepoint Creek	US Millarville	12.69	1162.40	1166.27
Threepoint Creek	US Millarville	12.40	1160.87	1165.99
Threepoint Creek	US Millarville	12.12	1160.88	1164.68
Threepoint Creek	US Millarville	11.91	1160.31	1164.56
Threepoint Creek	US Millarville	11.72	1159.34	1164.39
Threepoint Creek	US Millarville	11.42	1158.63	1163.72
Threepoint Creek	US Millarville	11.13	1156.91	1163.07
Threepoint Creek	US Millarville	11.09	1157.27	1162.58
Threepoint Creek	US Millarville	10.79	1156.66	1162.00
Threepoint Creek	US Millarville	10.36	1155.34	1159.82
Threepoint Creek	US Millarville	10.01	1154.32	1158.35
Threepoint Creek	US Millarville	9.73	1154.33	1157.68
Threepoint Creek	US Millarville	9.44	1152.97	1156.32
Threepoint Creek	US Millarville	9.11	1151.61	1154.90
Threepoint Creek	US Millarville	8.81	1151.38	1153.80
Threepoint Creek	US Millarville	8.65	1150.05	1152.82

River	Reach	River Station	Min Channel El. (m)	WSE (m) for 100-year
Threepoint Creek	US Millarville	(KIII) 8.46	1149.57	1152.32
Threepoint Creek	US Millarville	8.28	1149.67	1151.96
Threepoint Creek	US Millarville	8.06	1148.80	1151.41
Threepoint Creek	US Millarville	7.89	1147.57	1150.83
Threepoint Creek	US Millarville	7.65	1147.37	1150.29
Threepoint Creek	US Millarville	7.33	1146.24	1149.68
Threepoint Creek	US Millarville	7.02	1145.33	1148.60
Threepoint Creek	US Millarville	6.82	1145.23	1148.41
Threepoint Creek	US Millarville	6.44	1144.15	1147.85
Threepoint Creek	US Millarville	6.14	1143.80	1147.04
Threepoint Creek	US Millarville	5.85	1142.26	1146.09
Threepoint Creek	US Millarville	5.55	1141.98	1145.46
Threepoint Creek	US Millarville	5.25	1141.11	1145.15
Threepoint Creek	US Millarville	4.90	1140.09	1144.78
Threepoint Creek	US Millarville	4.66	1139.31	1144.02
Threepoint Creek	US Millarville	4.33	1138.83	1143.16
Threepoint Creek	US Millarville	4.29	1138.77	1142.95
Threepoint Creek	US Millarville	4.05	1138.37	1142.43
Threepoint Creek	US Millarville	3.93	1138.23	1142.06
Threepoint Creek	US Millarville	3.79	1137.94	1141.84
Threepoint Creek	US Millarville	3.67	1137.94	1140.64
Threepoint Creek	US Millarville	3.47	1137.48	1140.31
Threepoint Creek	US Millarville	3.15	1136.69	1140.02
Threepoint Creek	US Millarville	2.77	1134.83	1139.21
Threepoint Creek	US Millarville	2.56	1134.77	1138.65
Threepoint Creek	US Millarville	2.38	1134.38	1138.30
Threepoint Creek	US Millarville	2.17	1133.95	1138.09
Threepoint Creek	US Millarville	1.98	1133.14	1137.69
Threepoint Creek	US Millarville	1.71	1132.16	1136.67
Threepoint Creek	US Millarville	1.42	1131.79	1135.11
Threepoint Creek	US Millarville	1.22	1130.89	1134.31
Threepoint Creek	US Millarville	1.01	1130.10	1133.48
Threepoint Creek	US Millarville	0.81	1129.45	1132.91
Threepoint Creek	US Millarville	0.63	1128.33	1132.37
Threepoint Creek	US Millarville	0.48	1127.88	1131.36
Threepoint Creek	US Millarville	0.20	1126.88	1130.43

River		River	Min Ohannal El	
	Reach	Station (km)	min Channel El.	VVSE (M) for 100-year Flood
Sheep River	US Threepoint	59.66	1272.02	1277.16
Sheep River	US Threepoint	59.46	1271.27	1275.53
Sheep River	US Threepoint	59.23	1269.57	1274.28
Sheep River	US Threepoint	59.00	1268.94	1273.04
Sheep River	US Threepoint	58.69	1267.60	1271.61
Sheep River	US Threepoint	58.33	1265.73	1268.40
Sheep River	US Threepoint	58.08	1263.56	1267.08
Sheep River	US Threepoint	57.82	1262.40	1264.98
Sheep River	US Threepoint	57.56	1260.45	1264.15
Sheep River	US Threepoint	57.32	1257.53	1262.81
Sheep River	US Threepoint	57.04	1256.23	1260.83
Sheep River	US Threepoint	56.53	1253.98	1258.11
Sheep River	US Threepoint	56.35	1253.02	1258.48
Sheep River	US Threepoint	56.12	1251.50	1256.07
Sheep River	US Threepoint	55.74	1249.61	1253.71
Sheep River	US Threepoint	55.47	1248.06	1251.41
Sheep River	US Threepoint	55.27	1246.63	1250.33
Sheep River	US Threepoint	55.08	1245.66	1249.46
Sheep River	US Threepoint	54.55	1242.53	1245.95
Sheep River	US Threepoint	54.33	1239.90	1244.87
Sheep River	US Threepoint	54.10	1239.41	1243.24
Sheep River	US Threepoint	53.67	1236.66	1240.80
Sheep River	US Threepoint	53.35	1234.36	1238.46
Sheep River	US Threepoint	52.95	1232.82	1236.01
Sheep River	US Threepoint	52.70	1231.34	1234.95
Sheep River	US Threepoint	52.40	1229.51	1232.99
Sheep River	US Threepoint	52.10	1228.08	1231.67
Sheep River	US Threepoint	51.74	1226.19	1229.27
Sheep River	US Threepoint	51.44	1224.39	1228.60
Sheep River	US Threepoint	51.17	1223.15	1226.85
Sheep River	US Threepoint	50.96	1221.78	1225.57
Sheep River	US Threepoint	50.61	1219.23	1224.15

Table 3-4 – Design Flood Profile for Sheep River

River		River		
		Station	Min Channel El.	WSE (m) for
Chaen Diver	Reach	(KM)	(M)	100-year Flood
Sheep River	US Threepoint	50.51	1210.33	1223.91
Sheep River	US Threepoint	50.21	1217.00	1222.83
Sheep River	US Inreepoint	49.83	1215.71	1220.05
Sheep River	US Threepoint	49.54	1214.09	1218.97
Sheep River	US Threepoint	49.18	1211.47	1217.14
Sheep River	US Threepoint	48.94	1210.53	1215.91
Sheep River	US Threepoint	48.69	1208.88	1213.62
Sheep River	US Threepoint	48.44	1207.09	1212.78
Sheep River	US Threepoint	48.19	1205.74	1212.02
Sheep River	US Threepoint	48.15	1205.93	1211.06
Sheep River	US Threepoint	48.08	1205.62	1209.89
Sheep River	US Threepoint	47.92	1203.76	1208.74
Sheep River	US Threepoint	47.88	1203.23	1208.75
Sheep River	US Threepoint	47.62	1203.81	1206.75
Sheep River	US Threepoint	47.35	1201.82	1206.08
Sheep River	US Threepoint	47.08	1199.95	1204.38
Sheep River	US Threepoint	46.78	1198.84	1202.21
Sheep River	US Threepoint	46.63	1197.65	1201.83
Sheep River	US Threepoint	46.46	1197.09	1200.98
Sheep River	US Threepoint	46.20	1195.55	1200.31
Sheep River	US Threepoint	46.10	1194.45	1199.75
Sheep River	US Threepoint	46.06	1194.37	1198.35
Sheep River	US Threepoint	46.01	1194.33	1198.23
Sheep River	US Threepoint	45.97	1193.87	1197.21
Sheep River	US Threepoint	45.94	1193.51	1196.91
Sheep River	US Threepoint	45.88	1193.08	1196.90
Sheep River	US Threepoint	45.73	1191.92	1196.04
Sheep River	US Threepoint	45.53	1191.40	1195.53
Sheep River	US Threepoint	45.29	1190.01	1193.97
Sheep River	US Threepoint	45.05	1189.23	1192.71
Sheep River	US Threepoint	44.78	1187.21	1191.47
Sheep River	US Threepoint	44.41	1184.74	1189.52
Sheep River	US Threepoint	44.13	1184.28	1188.45
Sheep River	US Threepoint	44.00	1183.31	1187.25
Sheep River	US Threepoint	43.91	1182.47	1186.40
Sheep River	US Threepoint	43.47	1180.57	1183.36
Sheep River	US Threepoint	43.28	1179.42	1181.94

River		River		
	_	Station	Min Channel El.	WSE (m) for
	Reach	(km)	(m)	100-year Flood
Sheep River	US Inreepoint	43.04	1178.15	1180.35
Sheep River	US Inreepoint	42.82	1175.80	1178.56
Sheep River	US Threepoint	42.62	11/4.68	11/7.78
Sheep River	US Threepoint	42.45	1173.23	1177.26
Sheep River	US Threepoint	42.29	1172.09	1176.96
Sheep River	US Threepoint	42.24	1171.12	1176.72
Sheep River	US Threepoint	42.21	1171.16	1175.85
Sheep River	US Threepoint	42.12	1170.64	1174.73
Sheep River	US Threepoint	41.94	1170.11	1173.86
Sheep River	US Threepoint	41.80	1169.79	1173.43
Sheep River	US Threepoint	41.63	1168.99	1171.77
Sheep River	US Threepoint	41.36	1166.79	1169.67
Sheep River	US Threepoint	41.13	1165.31	1168.39
Sheep River	US Threepoint	40.81	1162.66	1165.99
Sheep River	US Threepoint	40.51	1160.71	1164.30
Sheep River	US Threepoint	40.23	1159.26	1162.39
Sheep River	US Threepoint	39.85	1157.02	1159.87
Sheep River	US Threepoint	39.50	1155.15	1157.03
Sheep River	US Threepoint	39.23	1152.76	1155.39
Sheep River	US Threepoint	39.12	1152.08	1154.84
Sheep River	US Threepoint	38.84	1149.74	1153.20
Sheep River	US Threepoint	38.65	1149.49	1152.38
Sheep River	US Threepoint	38.35	1147.39	1151.00
Sheep River	US Threepoint	38.17	1147.09	1149.79
Sheep River	US Threepoint	37.99	1145.72	1148.35
Sheep River	US Threepoint	37.74	1144.10	1147.02
Sheep River	US Threepoint	37.58	1143.55	1146.51
Sheep River	US Threepoint	37.40	1142.68	1146.01
Sheep River	US Threepoint	37.25	1141.57	1143.76
Sheep River	US Threepoint	36.93	1139.51	1142.03
Sheep River	US Threepoint	36.64	1138.80	1140.80
Sheep River	US Threepoint	36.53	1138.34	1140.27
Sheep River	US Threepoint	36.31	1136.56	1138.66
Sheep River	US Threepoint	35.91	1133.84	1136.41
Sheep River	US Threepoint	35.61	1132.24	1134.14
Sheep River	US Threepoint	35.37	1131.46	1133.45
Sheep River	US Threepoint	35.27	1130.87	1133.06

River		River		
	Deesk	Station	Min Channel El.	WSE (m) for
Shoop Divor	Reach	(KM) 25.02	(M) 1120.22	100-year Flood
Sheep River	US Threepoint	33.02	1129.22	1131.24
Sheep River	DS Threepoint	24.09	1120.90	1130.70
Sheep River	DS Threepoint	34.20	1120.03	1129.22
Sheep River	DS Threepoint	34.12	1125.01	1128.74
Sheep River	DS Threepoint	33.83	1124.45	1127.00
Sheep River	DS Inreepoint	33.62	1124.00	1126.93
Sheep River	DS Inreepoint	33.44	1122.42	1126.53
Sheep River	DS Inreepoint	33.23	1122.14	1125.96
Sheep River	DS Threepoint	33.04	1121.41	1125.15
Sheep River	DS Threepoint	32.89	1120.48	1124.53
Sheep River	128 St Overflow	2.78	1140.31	1142.86
Sheep River	128 St Overflow	2.72	1139.73	1142.45
Sheep River	128 St Overflow	2.67	1139.63	1141.77
Sheep River	128 St Overflow	2.57	1139.27	1141.5
Sheep River	128 St Overflow	2.53	1138.82	1141.39
Sheep River	128 St Overflow	2.46	1138.51	1140.52
Sheep River	128 St Overflow	2.39	1138.12	1139.65
Sheep River	128 St Overflow	2.33	1137.61	1139.63
Sheep River	128 St Overflow	2.23	1136.98	1138.48
Sheep River	128 St Overflow	2.16	1135.43	1137.68
Sheep River	128 St Overflow	2.05	1135.19	1136.59
Sheep River	128 St Overflow	1.71	1132.24	1133.72
Sheep River	128 St Overflow	1.56	1131.56	1133.52
Sheep River	128 St Overflow	1.42	1130.99	1133.49
Sheep River	128 St Overflow	1.32	1129.42	1133.47
Sheep River	128 St Overflow	1.24	1128.58	1133.45
Sheep River	128 St Overflow	1.21	1128.74	1131.26
Sheep River	128 St Overflow	0.94	1126.34	1130.13
Sheep River	128 St Overflow	0.70	1126.84	1128.72
Sheep River	128 St Overflow	0.53	1124.76	1126.92
Sheep River	128 St Overflow	0.43	1122.15	1127.03
Sheep River	128 St Overflow	0.31	1126.00	1126.89
Sheep River	128 St Overflow	0.28	1125.71	1126.65
Sheep River	128 St Overflow	0.23	1125.38	1126.42
Sheep River	128 St Overflow	0.12	1124.47	1125.94
Sheep River	DS 128 Street	32.68	1119.92	1124.02
Sheep River	DS 128 Street	32.51	1119.08	1123.65

River		River		
	<u> </u>	Station	Min Channel El.	WSE (m) for
Oh a an Dissan	Reach	(km)	(m)	100-year Flood
Sheep River	DS 128 Street	32.32	1118.41	1122.83
Sheep River	DS 128 Street	32.00	1117.55	1121.58
Sheep River	DS 128 Street	31.63	1115.99	1120.00
Sheep River	DS 128 Street	31.27	1115.19	1118.50
Sheep River	DS 128 Street	30.87	1114.01	1116.93
Sheep River	DS 128 Street	30.44	1112.43	1114.96
Sheep River	DS 128 Street	30.09	1110.34	1113.79
Sheep River	DS 128 Street	29.73	1109.08	1112.35
Sheep River	DS 128 Street	29.46	1107.80	1109.98
Sheep River	DS 128 Street	29.12	1105.65	1108.51
Sheep River	DS 128 Street	28.89	1104.27	1107.58
Sheep River	DS 128 Street	28.66	1103.25	1106.27
Sheep River	DS 128 Street	28.38	1102.37	1105.19
Sheep River	DS 128 Street	28.02	1099.38	1103.39
Sheep River	DS 128 Street	27.79	1099.01	1101.83
Sheep River	DS 128 Street	27.53	1097.72	1101.37
Sheep River	DS 128 Street	27.25	1094.84	1100.54
Sheep River	DS 128 Street	26.88	1094.03	1098.87
Sheep River	DS 128 Street	26.47	1093.01	1096.80
Sheep River	DS 128 Street	26.24	1091.71	1095.52
Sheep River	DS 128 Street	25.82	1090.61	1093.94
Sheep River	DS 128 Street	25.50	1088.13	1092.78
Sheep River	DS 128 Street	25.21	1087.57	1091.51
Sheep River	DS 128 Street	24.99	1086.24	1090.24
Sheep River	DS 128 Street	24.78	1085.32	1089.27
Sheep River	DS 128 Street	24.54	1085.20	1088.75
Sheep River	DS 128 Street	24.40	1084.68	1088.60
Sheep River	DS 128 Street	24.12	1083.50	1087.78
Sheep River	DS 128 Street	23.85	1082.67	1086.46
Sheep River	DS 128 Street	23.58	1080.78	1085.46
Sheep River	DS 128 Street	23.27	1080.11	1084.00
Sheep River	DS 128 Street	22.98	1078.69	1083.00
Sheep River	DS 128 Street	22.77	1078.06	1082.12
Sheep River	DS 128 Street	22.46	1076.93	1081.09
Sheep River	DS 128 Street	22.17	1075.89	1079.96
Sheep River	DS 128 Street	21.85	1074.81	1078.36
Sheep River	DS 128 Street	21.80	1072.52	1078.35

River		River		
	<u> </u>	Station	Min Channel El.	WSE (m) for
Oh a an Dissan	Reach	(km)	(m)	100-year Flood
Sheep River	DS 128 Street	21.49	1071.75	1077.14
Sheep River	DS 128 Street	21.06	1070.39	1075.19
Sheep River	DS 128 Street	20.81	1070.05	1073.96
Sheep River	DS 128 Street	20.69	1069.83	1073.08
Sheep River	DS 128 Street	20.41	1069.40	1072.01
Sheep River	DS 128 Street	20.09	1067.02	1071.10
Sheep River	DS 128 Street	19.71	1064.98	1069.98
Sheep River	DS 128 Street	19.29	1063.47	1068.59
Sheep River	DS 128 Street	18.99	1062.68	1067.62
Sheep River	DS 128 Street	18.69	1061.97	1065.66
Sheep River	DS 128 Street	18.34	1060.09	1063.87
Sheep River	DS 128 Street	18.21	1059.43	1063.55
Sheep River	DS 128 Street	18.15	1059.20	1063.14
Sheep River	DS 128 Street	18.07	1058.49	1062.77
Sheep River	DS 128 Street	18.01	1058.19	1062.59
Sheep River	DS 128 Street	17.65	1056.47	1061.01
Sheep River	DS 128 Street	17.45	1056.42	1060.97
Sheep River	DS 128 Street	17.22	1054.82	1060.03
Sheep River	DS 128 Street	17.04	1055.24	1058.73
Sheep River	DS 128 Street	16.77	1053.81	1057.90
Sheep River	DS 128 Street	16.45	1052.57	1057.39
Sheep River	DS 128 Street	16.22	1051.81	1056.40
Sheep River	DS 128 Street	16.07	1051.12	1056.30
Sheep River	DS 128 Street	15.95	1050.80	1056.22
Sheep River	DS 128 Street	15.91	1051.09	1055.90
Sheep River	DS 128 Street	15.88	1050.91	1055.52
Sheep River	DS 128 Street	15.86	1050.68	1054.44
Sheep River	DS 128 Street	15.73	1050.03	1054.09
Sheep River	DS 128 Street	15.56	1049.37	1053.30
Sheep River	DS 128 Street	15.40	1049.23	1052.94
Sheep River	DS 128 Street	15.36	1048.39	1052.81
Sheep River	DS 128 Street	15.35	1048.29	1052.71
Sheep River	DS 128 Street	15.24	1047.97	1052.18
Sheep River	DS 128 Street	15.17	1047.58	1051.66
Sheep River	DS 128 Street	15.06	1048.02	1051.37
Sheep River	DS 128 Street	14.92	1046.92	1050.37
Sheep River	DS 128 Street	14.78	1046.43	1050.21

River		River		
		Station	Min Channel El.	WSE (m) for
	Reach	(km)	(m)	100-year Flood
Sheep River	DS 128 Street	14.62	1044.77	1049.83
Sheep River	DS 128 Street	14.45	1045.00	1049.00
Sheep River	DS 128 Street	14.25	1043.50	1048.09
Sheep River	DS 128 Street	14.04	1042.91	1047.44
Sheep River	DS 128 Street	13.82	1042.17	1046.45
Sheep River	DS 128 Street	13.65	1041.71	1045.76
Sheep River	DS 128 Street	13.48	1041.02	1045.67
Sheep River	DS 128 Street	13.25	1040.03	1045.43
Sheep River	DS 128 Street	13.13	1038.93	1044.75
Sheep River	DS 128 Street	13.12	1039.27	1044.52
Sheep River	DS 128 Street	13.01	1039.34	1044.59
Sheep River	DS 128 Street	12.85	1038.42	1044.58
Sheep River	DS 128 Street	12.75	1037.61	1044.26
Sheep River	DS 128 Street	12.73	1037.28	1042.44
Sheep River	DS 128 Street	12.64	1037.53	1041.56
Sheep River	DS 128 Street	12.55	1037.50	1041.35
Sheep River	DS 128 Street	12.47	1037.30	1040.62
Sheep River	DS 128 Street	12.34	1036.69	1040.25
Sheep River	DS 128 Street	12.25	1035.85	1039.82
Sheep River	DS Okotoks	12.02	1033.51	1038.05
Sheep River	DS Okotoks	11.90	1033.66	1037.72
Sheep River	DS Okotoks	11.75	1032.12	1036.74
Sheep River	DS Okotoks	11.54	1031.95	1036.63
Sheep River	DS Okotoks	11.47	1031.81	1035.41
Sheep River	DS Okotoks	11.25	1030.10	1034.07
Sheep River	DS Okotoks	10.93	1029.44	1033.16
Sheep River	DS Okotoks	10.63	1027.53	1032.31
Sheep River	DS Okotoks	10.45	1027.98	1031.83
Sheep River	DS Okotoks	10.15	1026.10	1031.09
Sheep River	DS Okotoks	9.87	1024.20	1028.92
Sheep River	DS Okotoks	9.58	1023.59	1028.59
Sheep River	DS Okotoks	9.31	1022.73	1026.81
Sheep River	DS Okotoks	9.09	1021.23	1025.74
Sheep River	DS Okotoks	8.79	1018.83	1025.41
Sheep River	DS Okotoks	8.44	1017.78	1024.01
Sheep River	DS Okotoks	8.2	1017.84	1022.40
Sheep River	DS Okotoks	7.94	1016.12	1021.39

River		River		
		Station	Min Channel El.	WSE (m) for
	Reach	(km)	(m)	100-year Flood
Sheep River	DS Okotoks	7.71	1014.85	1021.27
Sheep River	DS Okotoks	7.52	1013.47	1019.99
Sheep River	DS Okotoks	7.3	1013.29	1019.45
Sheep River	DS Okotoks	7.13	1013.06	1019.31
Sheep River	DS Okotoks	7.02	1011.83	1019.39
Sheep River	DS Okotoks	6.9789	1011.58	1018.25
Sheep River	DS Okotoks	6.94	1012.22	1017.37
Sheep River	DS Okotoks	6.85	1011.82	1016.79
Sheep River	DS Okotoks	6.6	1010.33	1015.54
Sheep River	DS Okotoks	6.32	1009.22	1014.07
Sheep River	DS Okotoks	6.01	1008.85	1013.58
Sheep River	DS Okotoks	5.77	1007.23	1012.98
Sheep River	DS Okotoks	5.59	1006.32	1012.15
Sheep River	DS Okotoks	5.29	1006.27	1010.04
Sheep River	DS Okotoks	5.16	1005.09	1009.87
Sheep River	DS Okotoks	5	1003.74	1009.12
Sheep River	DS Okotoks	4.83	1003.61	1007.92
Sheep River	DS Okotoks	4.64	1002.87	1007.38
Sheep River	DS Okotoks	4.4	1001.59	1006.85
Sheep River	DS Okotoks	4	1000.54	1005.32
Sheep River	DS Okotoks	3.64	998.64	1003.69
Sheep River	DS Okotoks	3.25	996.67	1002.48
Sheep River	DS Okotoks	2.98	995.93	1001.12
Sheep River	DS Okotoks	2.74	995.19	999.51
Sheep River	DS Okotoks	2.55	994.30	999.67
Sheep River	DS Okotoks	2.37	993.17	997.83
Sheep River	DS Okotoks	1.99	991.28	997.45
Sheep River	DS Okotoks	1.7	990.74	995.60
Sheep River	DS Okotoks	1.4	988.88	994.32
Sheep River	DS Okotoks	1.12	986.96	993.45
Sheep River	DS Okotoks	0.87	986.95	992.99
Sheep River	DS Okotoks	0.65	985.71	993.03
Sheep River	DS Okotoks	0.53	985.52	991.31
Sheep River	DS Okotoks	0.24	984.57	989.67
Sheep River	DS Okotoks	0	982.85	988.07

4. Design Flood Hazard Map Production

4.1 Floodway Mapping Methodology

The following procedure was used in ArcGIS to develop inundation extents for the design flood:

- 1. Assigned design flood water levels at each cross section
- 2. Created a continuous water surface elevation Triangulated Irregular Network (TIN) between cross sections
- 3. Manually adjusted the water surface elevation TIN in special areas.
- 4. Converted the adjusted TIN into a water surface elevation raster
- 5. The DTM raster was subtracted from water surface elevation raster to define wet areas
- 6. A code of "NoData" was assigned to all dry raster cells
- 7. Conversion of wet areas into a flood inundation polygon dataset and deletion of all features not related to main river channels
- 8. Overall cleanup and simplification of polygons
- 9. Smoothing of polygon outlines using the PAEK algorithm

In addition to the above procedure, backwater inundation for any large tributary areas was included based on the design water levels at the main channel at the confluences of these tributaries.

4.2 Floodway Criteria Maps

Floodway criteria maps show the basis for determining the floodway and flood fringe extents for the design flood, and document the results of the model simulations of water level, depths, and flow velocities in a reach. The open water floodway criteria maps included the following:

- The extent of the open water design flood
- Areas meeting or exceeding the 1 m depth floodway criterion for the design flood
- The locations along each model cross section where flow velocities estimated to meet the 1 m/s velocity criterion
- The locations of the main channel top of bank
- The floodway boundary for the open water design flood

- The location and extent of all cross sections used in the HEC-RAS models with appropriate labels
- Background aerial imagery
- Roads, bridges, and flood control structures.

The governing floodway criteria maps were prepared in a scale of 1:7,500 in the study datum and coordinate system (CSRS NAD83, 111° 3TM). The maps are provided in Appendix A.

4.3 Flood Hazard Maps

4.3.1 Overview

The flood hazard maps provide a display of the areas along each river reach that are either in the floodway and/or the flood fringe. The floodway was determined in accordance with the criteria listed above, and the flood fringe includes all other directly inundated areas that lie outside of the floodway. The maps are provided in Appendix B.

4.3.2 Areas in the Floodway

The key development areas and structures that lie within the Floodway are briefly summarized below.

Sheep River

- The west end of 2430 Drive West (map sheet 3).
- Low lying areas of the floodplain at Calkins Place South East near Turner Valley (map sheet 5).
- Low lying areas of the floodplain at North Royalite Way North East near Turner Valley (map sheet 5).
- Flood control dike at km 41.95 just downstream of Black Diamond (map sheet 6).
- The lower chords would be submerged on two bridges on the Sheep River the Highway 2A crossing in Okotoks (map sheet 14) and the Highway 22 crossing in Black Diamond (map sheet 6).
- Flood control dike at km 37.25 (map sheet 7).
- Large floodplain area and a number of low lying residences and roads at the Threepoint Creek and Sheep River confluence (map sheet 8).
- Large areas of the floodplain, and a rural residence at km 32 (map sheet 9).
- Meridian Street and sections low lying floodplain areas to the west of Meridian Street (map sheet 13).
- Various residences and infrastructure between km 11.89 and km 10.93 downstream of Okotoks (map sheet 15).

- Access road to Okotoks water treatment facility (map sheet 15).
- Northern sections of the Country Lanes Estates RV park just upstream of Highway 2 (map sheet 16).

Threepoint Creek

- Residences located at km 31.9 (map sheets 19-20).
- Sections of the 2338 Drive West roadway (map sheets 19-20).
- Sections of the 256 Street West roadway (map sheet 21-22).
- Low lying floodplain areas around Millarville Landing, and overtopping of both highways 22 and 549 (map sheet 23).
- Flooding of low lying areas of the Millerville Racing and Agricultural society grounds at km 11.72 (map sheet 25).

4.3.3 Areas in the Flood Fringe

The key development areas and structures that lie within the Flood Fringe are briefly summarized below.

Sheep River

- Low lying areas of the floodplain at Calkins Place South East near Turner Valley (map sheet 5).
- Low lying areas of the floodplain at North Royalite Way North East near Turner Valley (map sheet 5).
- Areas of Black Diamond to the south of the 22 Highway bridge crossing (high hazard) up to 1 St Northwest (map sheet 6).
- Low lying areas and roads at the Threepoint Creek and Sheep River confluence (map sheet 8).
- The Okotoks waste water treatment facility and Eco Center, located just upstream of the 32nd St E bridge crossing (map sheets 14-15).
- Okotoks Lions Campground (high hazard flood fringe) (map sheet 14).
- Numerous areas within Okotoks, particularly along the north bank of the river, where the river overflows through a section of the downtown area (map sheets 13-15).
- Southern sections of the Country Lanes Estates RV park just upstream of Highway 2 (map sheet 16).

Threepoint Creek

• Sections of the 2338 Drive West roadway (map sheets 19-20)

- Low lying floodplain areas and residences to the south of Highway 529, south of Millarville Landing (map sheet 23)
- Flooding of low lying areas of the Millarville Racing and Agricultural society grounds at km 11.72 (map sheet 25)

5. Design Flood Grids

Flood risk inventory studies have been completed to define and quantify flood risks in the Sheep River study.

5.1 Water Surface Elevation Grids

A water surface elevation grid was created by converting the water surface elevation TIN into a raster file with the same resolution as the DTM.

5.2 Flood Depth Grids

A flood depth grid was created by subtracting the water surface elevation grid from the DTM. The flood depth grid has the same resolution and alignment as the DTM, and includes all inundated areas.

6. Conclusions

The boundary between the floodway and flood fringe was determined using the calibrated HEC-RAS model and in consideration of the criteria for floodway determination. The floodway typically includes areas where water depths are greater than 1 m or where flow velocities are greater than 1 m/s. Exceptions may be made for ineffective flow areas, backwater areas or to accommodate a hydraulically smooth floodway line.

The governing floodway and flood fringe areas were then delineated for the Sheep River and Threepoint Creek, and are summarized in the mapping series included in Appendix B of this report.

7. References

AEP (Alberta Environment and Parks). 2011. Flood Hazard Identification Program Guidelines. July 2011

AFW (WOOD), 2017. Sheep River Hazard Study Survey and Base Data Collection Report

Hatch. 2019a. Sheep River Hazard Study – Hydraulic Model Creation, Calibration and Inundation Mapping Report, July 2019.

Hatch. 2019b. Sheep River Hazard Study – Open Water Flood Hazard Identification Report, July 2019.

Design Flood Hazard Mapping

Appendix A Flood Criteria Mapping

March.2023

SHEEP RIVER FLOOD HAZARD STUDY

FLOODWAY CRITERIA MAP LIBRARY

Definitions

Flood Hazard Map - A flood hazard map is a specific type of flood map that identifies the area flooded for the 1:100 design flood, and divides that flood hazard area into floodway and flood fringe zones. Flood hazard maps can also show additional flood hazard information, including the incremental areas at risk for more severe floods like the 1:200 and 1:500 floods.Flood hazard maps are typically used for long -term flood hazard area management and land-use planning.

Design Flood - The design flood standard in Alberta is the 1:100 flood, which is a flood that has a 1% chance of being equaled or exceeded in any given year. The design flood is typically based on the 1:100 open water flood, but it can also reflect 1:100 ice jam flood levels or be based on a historical flood event. Different sized floods have different chances of occurring – for example , a 1:200 flood has a 0.5% chance of occurring in any given year and a 1:500 flood has a 0.2% chance of occurring in any given year – but only the 1:100 design flood is used to define the floodway and flood fringe zones on flood hazard maps .

Floodway - When a floodway is first defined on a flood hazard map, it typically represents the area of highest flood hazard where flows are deepest, fastest, and most destructive during the 1:100 design flood. When a flood hazard map is updated, the floodway will not get larger in most circumstances to maintain long -term regulatory certainty, even if the flood hazard area gets larger or design flood levels get higher.

Flood Fringe - The flood fringe is the area outside of the floodway that is flooded or could be flooded during the 1:100 design flood. The flood fringe typically represents areas with shallower, slower, and less destructive flooding, but it may also include "high hazard flood fringe" areas . Areas at risk of flooding behind flood berms may also be mapped as "protected flood fringe "areas .

High Hazard Flood Fringe - The high hazard flood fringe identifies areas within the flood fringe with deeper or faster moving water than the rest of the flood fringe. High hazard flood fringe areas are likely to be most significant for flood maps that are being updated, but they may also be included in new flood maps.

Protected Flood Fringe - The protected flood fringe identifies areas that could be flooded if dedicated flood berms fail or do not work as designed during the 1:100 design flood, even if they are not overtopped. Protected flood fringe areas are part of the flood fringe and do not differentiate between areas with deeper or faster moving water and shallower or slower moving water.

TITLE

FIGURE Sheet 1 of 28

400 METRES METRE

SHEEP RIVER FLOOD HAZARD STUDY

REFERENCE(S)

SHEET 2

PROJECT NO

CONTROL 228-272-0008-3321 0

PROJECT NO

CONTROL 228-272-0008-3321

0

PROJEC

SHEEP RIVER FLOOD HAZARD STUDY

TITLE

SHE ω

400 METRES METRE

SHEEP RIVER FLOOD HAZARD STUDY

TITLE

PROJECT NO

CONTROL 228-272-0008-3321 0

PROJECT NO.
H/355730

TITLE

CONTROL 228-272-0008-3321

0

SHEEP RIVER FLOOD HAZARD STUDY

REFERENCE(S) 400 METRES METRE

SHE

PROJECT NO

TITLE

CONTROL 228-272-0008-3321

SHEEP RIVER FLOOD HAZARD STUDY

0

Sheet 5 of 28

REFERENCE(S) 400 METRES METRE

_	
_	
_	PROJECT NO.

TITLE

0

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

REFERENCE(S)

SHEET 7 →

REFERENCE(S)

400 METERES METERES MERTA 2017, ALL RIGHTS RESERVED. MAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

DESIGN FLOODWAY CRITERIA MAP

PROJECT NO H/355730

TITLE

CONTROL 228-272-0008-3321 0

FIGURE Sheet 7 of 28

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

PROJECT NO

TITLE

CONTROL 228-272-0008-3321

0

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

TITLE

PROJECT NO H/355730

CONTROL 228-272-0008-3321

0

FIGURE Sheet 9 of 28

-	
-	PROJECT SHEEP RIVER FLOOD HAZARD STUDY
t	
-	DESIGN FLOODWAY CRITERIA MAP

PROJECT NO H/355730

CONTROL 228-272-0008-3321

0

ADDR: NATURE AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. MAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. METRES DATUM: NAD 83 CSRSPROJECTION:3TM 114

REFERENCE(S)

PROJECT NO

TITLE

CONTROL 228-272-0008-3321

0

FIGURE Sheet 11 of 28

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

REFERENCE(S)

PROJEC

SHEEP RIVER FLOOD HAZARD STUDY

LEGEND

Classification: Public

FNC	JJE		IN	U
H/3	35	57	'3	0

TITLE

DD

CONTROL 228-272-0008-3321

0

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

PROJEC

REFERENCE(S)

SHEET 13

LEGEND

Classification: Public

1:	0 50 100	0 200 30	00 400 METRES	ALBERTA 2017, ALL RIC IMAGERY CAPTURED ALBERTA. DATUM: NAD 83 CSRSI	APRIL 2017 BY GEODESY GROU PROJECTION:3TM 114	d
	Uhart			SHEEP RIVER I	LOOD HAZARD STU	[
ND PARKS	(ben	Gov Gov	ernment			_
ONSULTANT				TITLE		
	DESIGNED	N. LANGENBERG	2023-03-31	DESIGN FLOOD	DWAY CRITERIA MAP	
	PREPARED	R. GROENEVELD	2023-03-31			
	REVIEWED	N. LANGENBERG	2023-03-31	PROJECT NO.	CONTROL	-
	APPROVED	J. GROENEVELD	2023-03-31	H/355730	228-272-0008-3321	

PROJECTINC)
H/355730)

0

REFERENCE(S) ROADS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. RES DATUM: NAD 83 CSRSPROJECTION:3TM 114 PROJECT

SHEEP RIVER FLOOD HAZARD STUDY

TITLE

SHEET

4

PROJECT NO.
H/355730

TITLE

SHEEP RIVER FLOOD HAZARD STUDY

REFERENCE(S) 400 METRES METRE

SHEET 15

LEGEND

Classification: Public

PR	OJ	EC	1	IN	C
H/	35	55	7	3	(

0

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

PROJEC

SHEEP RIVER FLOOD HAZARD STUDY

TITLE

SHEET 16 ↑

_	
	PROJECT NO.
	H/355730

TITLE

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

REFERENCE(S)

SHEET 17 ↑

_	
	PROJECT NO.
	H/355730

TITLE

CONTROL 228-272-0008-3321

0

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

PROJECT NO.

REFERENCE(S)

CONTROL 228-272-0008-3321

0

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

TITLE

PROJECT NO

TITLE

CONTROL 228-272-0008-3321

SHEEP RIVER FLOOD HAZARD STUDY

0

400 METRES METRE

20

				50	大和新聞
00 J TRES	REFERENCE(S) ROADS, RAILWAY: ALBERTA 2017, AL IMAGERY CAPTUF ALBERTA. DATUM: NAD 83 C	S AND POPULATED AR L RIGHTS RESERVED. RED APRIL 2017 BY GEO SRSPROJECTION:3TM	EAS ARE FROM ALTALIS DDESY GROUP INC. FO 114	S, © GOVERNMENT OF R THE GOVERNMENT	OF
ent	PROJECT SHEEP RIVE	ER FLOOD HAZ	ARD STUDY		
31	TITLE DESIGN FLO	OODWAY CRITE	RIA MAP		
31	PROJECT NO.	CONTROL	REV.		FIG

SHEET 21 ↑

228-272-0008-3321

0

FIGURE Sheet 20 of 28

PROJECT	NO.
H/3557	30

TITLE

CONTROL 228-272-0008-3321

0

SHEEP RIVER FLOOD HAZARD STUDY

REFERENCE(S) ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

H/355730

0

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

TITLE

SHEET 23 REFERENCE(S)

REFERENCE(S)

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

TITLE

PROJECT NO

CONTROL 228-272-0008-3321

0

FIGURE Sheet 23 of 28

BANK STATION

FLOODWAY STATION

VELOCITY ≥ 1m/s

PROPOSED FLOODWAY

PROJECT NO H/355730

TITLE

CONTROL 228-272-0008-3321

SHEEP RIVER FLOOD HAZARD STUDY

0

Sheet 24 of 28

FIGURE

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

REFERENCE(S)

PROJECT NO.
H/355730

TITLE

CONTROL 228-272-0008-3321

0

REFERENCE(S) 400 METRES METRE

SHEEP RIVER FLOOD HAZARD STUDY

PROJEC

LEGEND

Classification: Public

REFERENCE(S)

ADDR: NATURE AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. MAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. METRES DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

TITLE

PROJECT NO

CONTROL 228-272-0008-3321

0

SHEE 28

REFERENCE(S)

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

PROJECT NO

TITLE

CONTROL 228-272-0008-3321

0

FIGURE Sheet 27 of 28

BANK STATION

FLOODWAY STATION

VELOCITY \geq 1m/s

PROPOSED FLOODWAY

REFERENCE(S)

PROJEC

TITLE

ADDS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEEP RIVER FLOOD HAZARD STUDY

PROJECT NO H/355730

CONTROL 228-272-0008-3321

0

FIGURE Sheet 28 of 28

Appendix B Flood Hazard Mapping

March.2023

SHEEP RIVER FLOOD HAZARD STUDY

DESIGN FLOOD HAZARD MAP LIBRARY

Definitions

Flood Hazard Map - A flood hazard map is a specific type of flood map that identifies the area flooded for the 1:100 design flood, and divides that flood hazard area into floodway and flood fringe zones. Flood hazard maps can also show additional flood hazard information, including the incremental areas at risk for more severe floods like the 1:200 and 1:500 floods.Flood hazard maps are typically used for long -term flood hazard area management and land-use planning.

Design Flood - The design flood standard in Alberta is the 1:100 flood, which is a flood that has a 1% chance of being equaled or exceeded in any given year. The design flood is typically based on the 1:100 open water flood, but it can also reflect 1:100 ice jam flood levels or be based on a historical flood event. Different sized floods have different chances of occurring – for example , a 1:200 flood has a 0.5% chance of occurring in any given year and a 1:500 flood has a 0.2% chance of occurring in any given year – but only the 1:100 design flood is used to define the floodway and flood fringe zones on flood hazard maps .

Floodway - When a floodway is first defined on a flood hazard map, it typically represents the area of highest flood hazard where flows are deepest, fastest, and most destructive during the 1:100 design flood. When a flood hazard map is updated, the floodway will not get larger in most circumstances to maintain long -term regulatory certainty, even if the flood hazard area gets larger or design flood levels get higher.

Flood Fringe - The flood fringe is the area outside of the floodway that is flooded or could be flooded during the 1:100 design flood. The flood fringe typically represents areas with shallower, slower, and less destructive flooding, but it may also include "high hazard flood fringe" areas . Areas at risk of flooding behind flood berms may also be mapped as "protected flood fringe "areas .

High Hazard Flood Fringe - The high hazard flood fringe identifies areas within the flood fringe with deeper or faster moving water than the rest of the flood fringe. High hazard flood fringe areas are likely to be most significant for flood maps that are being updated, but they may also be included in new flood maps.

Protected Flood Fringe - The protected flood fringe identifies areas that could be flooded if dedicated flood berms fail or do not work as designed during the 1:100 design flood, even if they are not overtopped. Protected flood fringe areas are part of the flood fringe and do not differentiate between areas with deeper or faster moving water and shallower or slower moving water.

Α

TITLE

SHEEP RIVER FLOOD HAZARD STUDY

REFERENCE(S) ROADS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. METRES DATUM: NAD 83 CSRSPROJECTION:3TM 114

Ň

PROJECT NO.

TITLE

CONTROL 228-272-0008-3321

Α

DBUIEC. SHEEP RIVER FLOOD HAZARD STUDY

Α

PROJECT NO.

TITLE

SHEEP RIVER FLOOD HAZARD STUDY

REFERENCE(S) ROADS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. METRES DATUM: NAD 83 CSRSPROJECTION:3TM 114

SHEET 4

CONTROL 228-272-0008-3321

Α

TITLE

SHEEP RIVER FLOOD HAZARD STUDY

Α

TITLE

SHEEP RIVER FLOOD HAZARD STUDY

TITLE

CONTROL 228-272-0008-3321

Α

Sheet 6 of 28

SHEEP RIVER FLOOD HAZARD STUDY

ALBERTA. METRES DATUM: NAD 83 CSRSPROJECTION:3TM 114

REFERENCE(S) ROADS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF

PROJECT	NC
H/3557	30

228-272-0008-3321

Α

80

CONTROL

TITLE

SHEEP RIVER FLOOD HAZARD STUDY

ALBERTA. METRES DATUM: NAD 83 CSRSPROJECTION:3TM 114

REFERENCE(S) ROADS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF

~

Classification: Public

PROJECT NO.

TITLE

CONTROL 228-272-0008-3321

Α

SHEEP RIVER FLOOD HAZARD STUDY

HHH RAILWAY

PROJECT	NO.
H/3557	30

CONTROL 228-272-0008-3321

Α

REVIEWED N. LANGENBERG 2023-03-31

APPROVED J. GROENEVELD 2023-03-31

CONTROL 228-272-0008-3321

Α

PROJECT NO.

TITLE

SHEEP RIVER FLOOD HAZARD STUDY

PRIMARY HIGHWAY

HHH RAILWAY

Classification: Public

----- LOCAL ROAD; LOCAL STREET

CONTROL 228-272-0008-3321

Α

Α

PROJECT NO.

TITLE

PROJEC SHEEP RIVER FLOOD HAZARD STUDY

CONSULTANT

ΗΔΤ

PREPARED

R. GROENEVELD 2023-03-31

BRIDGES

PRIMARY HIGHWAY

HHH RAILWAY

LOCAL ROAD; LOCAL STREET

FLOOD EXTENT- 500 YEAR

DISCHARGE SHEEP RIVER= 1300 m³/s

Classification: Public

APPROVED J. GROENEVELD 2023-03-31 H/355730

TITLE DESIGNED N. LANGENBERG 2023-03-31 DESIGN FLOOD HAZARD MAP

> CONTROL 228-272-0008-3321

Α

REVIEWED N. LANGENBERG 2023-03-31 PROJECT NO.

CONTROL 228-272-0008-3321

Α

SHEEP RIVER FLOOD HAZARD STUDY

CONTROL 228-272-0008-3321

Α

PROJEC SHEEP RIVER FLOOD HAZARD STUDY

CONTROL 228-272-0008-3321

SHEEP RIVER FLOOD HAZARD STUDY

Α

CONTROL 228-272-0008-3321

Α

TITLE

SHEEP RIVER FLOOD HAZARD STUDY

PROJEC

Α

TITLE

SHEEP RIVER FLOOD HAZARD STUDY

CONTROL 228-272-0008-3321

Α

SHEEP RIVER FLOOD HAZARD STUDY

CONTROL 228-272-0008-3321

Α

SHEEP RIVER FLOOD HAZARD STUDY

ALBERTA. METRES DATUM: NAD 83 CSRSPROJECTION:3TM 114

REFERENCE(S) ROADS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF

TITLE

CONTROL 228-272-0008-3321

Α

PROJECT NO.

SHEEP RIVER FLOOD HAZARD STUDY

TITLE

228-272-0008-3321

Α

FIGURE Sheet 22 of 28

SHEEP RIVER FLOOD HAZARD STUDY

CONTROL

CONTROL 228-272-0008-3321

Α

Α

TITLE

SHEEP RIVER FLOOD HAZARD STUDY

AND PARKS

ΗΔΤ

PREPARED

CONSULTANT

PRIMARY HIGHWAY LOCAL ROAD; LOCAL STREET DISCHARGE THREEPOINT CREEK= 616 m³/s HHH RAILWAY Classification: Public

FLOOD CONTROL STRUCTURES

BRIDGES

FLOOD EXTENT- 200 YEAR

FLOOD EXTENT- 500 YEAR

PROJECT NO. APPROVED J. GROENEVELD 2023-03-31 H/355730

TITLE

CONTROL 228-272-0008-3321

Α

DESIGNED N. LANGENBERG 2023-03-31 DESIGN FLOOD HAZARD MAP

Government

R. GROENEVELD 2023-03-31

REVIEWED N. LANGENBERG 2023-03-31

CONTROL 228-272-0008-3321

Α

PROJECT NO.

REFERENCE(S) ROADS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF ALBERTA. METRES DATUM: NAD 83 CSRSPROJECTION:3TM 114 SHEEP RIVER FLOOD HAZARD STUDY

 \rightarrow

TITLE

CONTROL 228-272-0008-3321

Α

SHEEP RIVER FLOOD HAZARD STUDY

ALBERTA. METRES DATUM: NAD 83 CSRSPROJECTION:3TM 114

REFERENCE(S) ROADS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF

PROJECT NO

TITLE

CONTROL 228-272-0008-3321

А

DBUIEC. SHEEP RIVER FLOOD HAZARD STUDY

ALBERTA. METRES DATUM: NAD 83 CSRSPROJECTION:3TM 114

REFERENCE(S) ROADS, RAILWAYS AND POPULATED AREAS ARE FROM ALTALIS, © GOVERNMENT OF ALBERTA 2017, ALL RIGHTS RESERVED. IMAGERY CAPTURED APRIL 2017 BY GEODESY GROUP INC. FOR THE GOVERNMENT OF