Fig 1: Satellite Photo Fig 2: 1:50 000 Airphoto (2006) Fig 3: LiDAR DEM (50m Contours) Fig 4: FPS Alignments Fig 5: General Layout for Old Bridge 01/17/11 # BF 76474 Hwy 40 Over Smoky River Hydrotechnical Summary ### Channel Capacity: S = 0.0025 B = 75 m, h = 3 m, T = 100 m Use AT equation At Bank Height: Y = 3.0 m, V = 2.4 m/s, Q = 650 cms At Channel Capacity: Y = 4.0 m, V = 3.0 m/s, Q = 1100 cms ## Historical Highwater Data: HW was noted in June 1967 (Y \sim 3m), June 1968 (Y \sim 2.5m), June 1971 (Y \sim 3.5m), June 1972 (Y \sim 4m, span washed out), June 1982 (Y \sim 3.5m), July 1997 (Y \sim 2.5m), and July 2001 (u/s spur damaged). Gauge 07GA001 (DA = 3840 km^2 , 1968 - Now) reports Q = 1380 cms (stage rise $\sim 4.8 \text{m}$) in June 1972 (gauged at Q = 670 cms, stage rise = 3.5 m), Q = 1010 cms in July 1997, and Q = 810 cms in July 2001. #### Basin Runoff Potential: Gross DA = 3730 km² (exceeds range of application of runoff depth method). #### Conclusion: Historical observations govern. Recommended parameters : Y = 4.0 m, V = 3.0 m/s, Q = 1100 cms EL 958.0 m (4615-P) # File 76474 - Smoky River near Grande Cache ## Hydrotechnical File History | 1966 | New bridge proposed to service mine on north side of river, located approx 6 km upstream of existing foot bridge and ferry. Class 2 rock placed to protect two guidebanks and three spurs located on the right bank upstream. Ice jam in December caused by CNR road bridge located near old foot bridge. Ice $\sim 1.5 \text{m} \geq \text{LWL}$. | |------|--| | 1967 | Bridge built. Highwater inspection. Spurs and guidebanks have settled and additional rock is required. | | 1969 | Class 3 rock placed at left guidebank and at spur # 3. Highwater inspection in July. Film made of model tests performed by U of A. | | 1971 | Highwater in June. Rock deteriorating at spur # 3. Rock rearranged at left guidebank. 4th spur considered for right bank upstream. | | 1972 | Major flood, estimated to be greater than 1:100 year flood. Left approach span washed out due to abutment scour and temporary bailey span erected. Local velocities estimated to be approx. 20'/s (6 m/s) which exceeds specs for available riprap classes. An 80' steel span was added to replace the washed out 55' concrete girder span. Spur #1 and the left guidebank were rebuilt, and protected with concrete and class 3 rock with holder piles. Spur #1 was rebuilt slightly shorter. | | 1976 | Handrail profile surveyed. | | 1979 | Highway 40 about 6 km north of the bridge being attacked by the river. A temporary rock spur is constructed to save the highway. | | 1981 | The temporary rock spur is starting to erode. | | 1982 | Highwater with 3 peaks through the summer. | | 1983 | 2 permanent spurs built, with one being protected by Class 3 rock. | | 1987 | Holder piles at bridge noted to be projecting into the flow, and are cut-off. | | 1990 | Highwater inspection - noted that upstream end of the right guidebank is under attack. Some erosion has occurred between spur $\#1$ and the right guidebank, but bank is well vegetated. | | 1993 | Additional erosion is noted between the spur #1 and the right guidebank. Short spur may be required in future. | | 1994 | U/S end of right guidebank and the nose of spur #1 are reinforced | | | | Looking North; flow left to right Day After High Water. Level Had Dropped 405 Feet When These Photos Where Taken. Alternative 3 (R400), 4(R500), 5(R600) Alternative 3: Multiple Vertical Profiles