ATT-50/22, PERCENT FRACTURES
Part II, 80,000 $\mu \mathrm{m}$ Minus Aggregate

1.0 SCOPE

This method describes the procedure for checking the efficiency of crushing operations on any aggregate with a topsize larger than $25,000 \mu \mathrm{~m}$ and smaller than $80,000 \mu \mathrm{~m}$, by determining the percent, by weight of particles which have two or more fractured faces.

2.0 EQUIPMENT

Refer to ATT-50, Part "I", Section 2.0, Equipment.
Additional equipment: $16,000 \mu \mathrm{~m}$ sieve, sample splitter mixing pans, sample bags

Data Sheet: Percent Fractures $(-80,000 \mu \mathrm{~m})$, such as MAT 6-28

3.0 PROCEDURE

3.1 Sample Preparation

1. Obtain a representative sample of aggregate as directed in ATT-38, SAMPLING, Gravel and Sand. The approximate sample sizes required according to the aggregate topsize are shown in Table 1.

These sizes are based on the minimum required weight of $+16,000 \mu \mathrm{~m}$ aggregate shown in Table 2 and the specified maximum percent passing (or minimum \% retained) on the $16,000 \mu \mathrm{~m}$ sieve. As the percent passing the $16,000 \mu \mathrm{~m}$ sieve decreases, the sample size may be decreased as long as the minimum weight of $+16,000 \mu \mathrm{~m}$ aggregate shown in Table 2 is obtained.
2. Sieve the sample through the $16,000 \mu \mathrm{~m}$ sieve.

TABLE 1	
AGGREGATE TOPSIZE $(\mu \mathrm{m})$	SAMPLE SIZE $(k g)$
40000	75
50000	60

3. Tare one large mixing pan and record as "Wt. of Pan" on line "B", as shown in Figure 1 on MAT 6-28.
4. Weigh the material retained on the $16,000 \mu \mathrm{~m}$ sieve in the tared mixing pan. Record as "Wt. of $+16,000 \mu \mathrm{~m}$ Aggregate + Pan" on line "A".
5. Calculate the "Weight of $+16,000 \mu \mathrm{~m}$ Aggregate" on line " C " as follows:

Wt. of $+16000 \mu \mathrm{~m}$ Aggregate $=$ Wt. of $+16000 \mu m$ Aggregate \& Pan - Wt. of Tare Pan
The weight of $+16,000 \mu \mathrm{~m}$ aggregate must meet the minimum sample size according to the topsize of aggregate, as shown in Table 2.
6. Tare another large mixing pan and record its weight in line "G".

Page 1 of 4
7. Sieve the $-16,000 \mu \mathrm{~m}$ aggregate through the $5,000 \mu \mathrm{~m}$ sieve. Discard the $-5000 \mu \mathrm{~m}$ material.
8. Weigh material retained on the $5,000 \mu \mathrm{~m}$ sieve in the tared mixing pan.

Record as "Wt. of $-16,000 \mu \mathrm{~m}+5,000 \mu \mathrm{~m}$ Aggregate + Pan on line "F".
9. Determine the "Weight of $-16,000 \mu \mathrm{~m}+5,000 \mu \mathrm{~m}$ Aggregate" on line " H " as follows:
$=$ Wt. of $-16000 \mu m+5000 \mu m$ Aggregate \& Pan - Wt. of Tare Pan
10. When the $-16,000 \mu \mathrm{~m}$ aggregate is at least 1300 grams, but not too large:
a) If the sample is clean enough to detect fractured faces, transpose the weight shown in the line " H " to line " K " and proceed with Section 3.2, Percent Fractures.
b) If the sample is too dirty to detect fractured faces, proceed with step 12 below.
11. If the weight of " $-16,000 \mu \mathrm{~m}+5,000 \mu \mathrm{~m}$ " aggregate is too large, use the sample divider to successively split this

TABLE 2	
AGGREGATE TOPSIZE $(\mu \mathrm{m})$	MINIMUM SAMPLE WT. OF + 16 000 $\mu \mathrm{m}$ AGGREGATE (g)
40000	11000
50000	11000

12. Label and tare a drying pan. Record the tare pan weight and pan number in line "J".
13. If the " $-16,000 \mu \mathrm{~m}+5,000 \mu \mathrm{~m}$ " aggregate is extremely dirty where it is difficult to detect fractured faces, or the sample has clay lumps (as these may add to the $+5000 \mu \mathrm{~m}$ weight):
a) Dump the $+5,000 \mu \mathrm{~m}$ material in a metal pail, cover it with water, agitate the sample, then drain the dirty water through the $5,000 \mu \mathrm{~m}$ sieve.
b) Repeat step (a) until the aggregate is clean enough to clearly detect fractured faces, and clay lumps have been broken down.
c) Dump the sample in the tared drying pan and dry the sample to a constant weight, as directed in ATT-14, MOISTURE CONTENT, Open Pan Method.
14. Weigh the material retained on $5,000 \mu \mathrm{~m}$ sieve in the tared drying pan. Record as "Wt. of $-16,000 \mu \mathrm{~m}+5,000 \mu \mathrm{~m}$ Aggregate \& Pan on line " l ".
15. Calculate the "Weight of $-16,000 \mu \mathrm{~m}+5,000 \mu \mathrm{~m}$ Aggregate" on line " K " as follows:
$=$ Wt. of $-16000 \mu m+5000 \mu m$ Aggregate \& Pan -Wt. of Tare Pan
Page 2 of 4

3.2 Percent Fractures

1. For both "-Topsize $+16,000 \mu \mathrm{~m}$ " and "-16,000 $\mu \mathrm{m}+5,000 \mu \mathrm{~m}$ " fractions, manually separate the crushed particles from the uncrushed particles.

NOTE: Any particle with two or more fractured faces is classified as a crushed particle.
2. Place the fractured "-Topsize $+16,000 \mu \mathrm{~m}$ Aggregate" in the tared mixing pan and weigh. Record as "Wt. of Crushed $+16,000 \mu \mathrm{~m}$ Aggregate \& Pan" on line "D".
3. Determine the "Weight of Crushed $+16,000 \mu \mathrm{~m}$ Aggregate" on line "E" as follows:
$=$ Wt. of Crushed $+16000 \mu \mathrm{~m}$ Aggregate \& Pan - Wt. of Tare Pan
4. Weigh the crushed "-16,000 $\mu \mathrm{m}+5,000 \mu \mathrm{~m}$ Aggregate" in the tared drying pan and record the weight in line "L".
5. Determine the "Weight of Crushed "-16,000 $\mu \mathrm{m}+5,000 \mu \mathrm{~m}$ Aggregate" on line " M " as follows:
$=$ Wt. of Crushed $-16000 \mu m+5000 \mu m$ Aggregate \& Pan - Wt. of Tare Pan
If this fraction was not split, transpose the result to line "P".
6. Calculate the Percent of the "-16,000 $\mu \mathrm{m}+5,000 \mu \mathrm{~m}$ " Aggregate (line "N") using the formula:

$$
\% \text { Fractures }=\frac{\text { Wt. of Crushed }-16000 \mu m+5000 \mu m \text { Agg. }}{\text { Wt. of }-16000 \mu m+5000 \mu m \text { Aggregate }} \times 100
$$

7. Determine the Total of Weight of $+5,000 \mu \mathrm{~m}$ Aggregate (line "Ø") as follows:

Total Wt. of Sample $=$ Wt. of $+16000 \mu \mathrm{~m}$ Agg. + Wt. of $-16000 \mu \mathrm{~m}+5000 \mu \mathrm{~m}$ Agg.
8. If the $-16,000 \mu \mathrm{~m}+5,000 \mu \mathrm{~m}$ aggregate was split, calculate the "Total Weight of Crushed Aggregate (of the total fraction) on line "P" as follows:

Total Wt. of Crushed -16 $000+5000 \mu \mathrm{~m}$ Agg. $=\frac{\text { \% Fractures } x \text { Wt. of }-16000 \mu \mathrm{~m}+5000 \mu \mathrm{~m} \text { Agg. }}{100 \%}$
9. Determine the "Total Weight of Crushed Aggregate" in the total sample (line "Q") as follows:
$=$ Wt. of Crushed $+16000 \mu \mathrm{~m}$ Agg. + Total Wt. of Crushed $-16000 \mu \mathrm{~m}+5000 \mu \mathrm{~m}$ Agg.
10. Calculate the "Percent Fractures of the Total Sample" (line "R") using the formula:
Total \% Fractures (\%) $=\frac{\text { Total Wt. of Crushed Aggregate (line "Q") }}{\text { Total Wt. of }+5000 \text { Aggregate (line "O") }} \times 100$

Page 3 of 4

ATT-50, Part II

Albertan Transportation MAT 6-28/22 Test Procedure ATT - 50, Part II	PERCENT FRACTURES $80000 \mu \mathrm{~m}$ MINUS			
	PROJECT	2:56	CONTRACT NO.	6666 / 95
	FROM	Here	SUPPLIER	R. ROADS
	TO	There	PIT NAME	CHERRY
			PIT LOCATION	NW 22-76-18-5

| MIXTYPE | | | |
| :--- | :---: | :---: | :---: | :---: |
| DATE | | | |
| FROM- TO TEST NUMBER | 1-Jan-2010 | | |
| DESIGNATION AND CLASS OF AGGREGATE | 1 | | |
| 2.40 | | | |

TOTAL TOPSIZE $+\mathbf{1 6} 000 \mu \mathrm{~m}$ AGGREGATE

A WT. OF $+16000 \mu \mathrm{~m}$ AGGREGATE \& PAN	$14,521.8$					
B WEIGHT OF TARE PAN	g	$\mathbf{2 , 4 8 3 . 2}$				
C WT. OF $+16000 \mu \mathrm{~m}$ AGGREGATE	A-B	g	$\mathbf{1 2 , 0 3 8 . 6}$			
D WT. OF FRACTURED $+16000 \mu \mathrm{~m}$ AGGREGATE \& PAN	g	$9,284.9$				
E WT. OF FRACTURED $+16000 \mu \mathrm{~m}$ AGGREGATE	D-B	g	$\mathbf{6 , 8 0 1 . 7}$			

TOTAL $-16000 \mu \mathrm{~m}+5000 \mu \mathrm{~m}$ AGGREGATE

PERCENT FRACTURES OF TOTAL SAMPLE

	TOTAL WT. OF-16000 \quad m $+5000 \mu \mathrm{~m}$ AGGREGATE	C+H	g	21,784.7			
P	TOTAL WT. OF FRACTURED - $16000 \mu \mathrm{~m}+5000 \mu \mathrm{~m}$ AGG.	* NH/100	g	7,728.1			
Q	TOTAL SAMPLE WT. OF FRACTURED AGGREGATE	E+P	g	14,529.8			
R	PERCENT FRACTURES OF TOTAL SAMPLE	100 Q/O	g	66.7\%			

NOTE: AFRACTURED PARTICLE IS A PARTICLE WITH TWO OR MORE FRACTURED FACES.

* Split sample only

REMARKS
\qquad
\qquad
\qquad

PROJECT MANAGER \qquad Mr. Klean \qquad MATERIALS TECHNOLOGIST(S) \qquad

FIGURE 1

Page 4 of 4

