PSDS Design- Worksheet "A" v. 1

LFH At-grade Area Sizing

The complete system is to comply with the Alberta Private Sewage Systems Standard of Practice and requirements set out in the LFH At-grade systems Varience.

This Worksheet is for use in Alberta to: Size the effluent application area under the chamber(s) area, To size the area that must be covered by the woodchip material.

It can be used for: Design of LFH At-grade
Use only Imperial units of measurements throughout this worksheet (feet, inches, Imperial gallons, etc.)

Use the following Worksheet to determine the Minimum required dimensions for an LFH At-grade and fill in the blanks on the appropriate diagram below for a level site or a sloping site of over 1\%

THE TERMS USED IN THIS DRAWING DESCRIBE SPECIFIC AREAS OF THE LFH AT-GRADE AND ARE USED IN THE FOLLOWING WORKSHEET

Step 1) Determine the expected peak volume of sewage per day:

Expected Peak Volume of Sewage per Day

Gals. per day

Step 2) Determine the slope criteria of the installation site:

Note: If the slope of the installation site exceeds 1% use the drawing "sloped site". If there is no slope, use the drawing "level site" 1% or less.

Step 3) Determine Effluent Hydraulic Loading Rate on Native Soil:

From site evaluation information the following is needed to be determined: 1) Soil Texture, 2) Soil Structure, 3) Grade. Based on those soil characteristics, determine the hydraulic effluent loading on the native soil. Article

Hydraulic Effluent Loading Rate 8.1.1.10

Use the hydraulic effluent loading rates for effluent quality of $<30 \mathrm{mg} / \mathrm{L}$ BOD \square
Gal./Sq. Ft. / day

Step 4) Determine the Hydraulic Linear Loading Rate on Native Soil:

From site evaluation information the following needs to be determined: 1) Soil Texture, 2) Soil Structure, 3) Grade of structure, 4) Depth of infiltration distance. Use that criteria to determine the allowed Hydraulic Linear Loading Rate. Article 8.1.1.10.

Hydraulic Linear Loading Rate

Gal./Linear Ft./day
Step 5) Determine Length of LFH At-grade:

From A1

From A4

Lineal Feet

Step 6) Calculate Effluent Application Surface Area Required
Refer to 8.1.2.2.(2)
SOP 2009, Allowed Loading Rate
May be
Total Minimum Effluent
$\leq 0.83 \mathrm{gal} / \mathrm{sq} . \mathrm{ft} . / \mathrm{day}$

Application Area
Equals

Step 7) Determine Minimum Width of Effluent Application Area:

Minimum Lenth of
At-grade from Box A5
Divided by

From A6

exceeding selected to result in narrower
 width required under chambers

Step 8) Determine Minimum Internal Open Width of Chambers:

(the internal width covered by a chamber or \# of chambers)

Minimum Effluent Application Width	Multiply by	Apply Allowed Reduction factor. Actual open area of chambers must cover 80% of total Application area	Equals	Minimum Actual Internal Open Width Provided by Chamber(s)
		0.8		
$\begin{gathered} \text { Ft. } \\ \text { From A7 } \end{gathered}$				Ft.

\section*{Step 9) Select the Chamber(s) to be Used and Number of Rows of Chambers Required:
 Width of selected chamber in
 FEET - enter actual internal effective width (not manufacturer's oustside dimensions)
 | |
| :---: |
 Example: 19 inches divided by 12 inches $=1.6$ feet
 \qquad quals
 Actual width of open area provided by chambers for effluent application area
 A9 31 inches divided by 12 inches = A8 2.6 feet}

Step 10) Calculate minimum Native Soil Infiltration Surface Area: [this is the area to be covered by the woodchip cover and includes the area under the chamber(s)]

Step 11) Determine Minimum Width of Native Soil Infiltration Area:

Step 12) Cover Material Width of LFH At-grade; Site Slope 1\% or Less.
Choose side slope of LFH At-grade cover material.

Toe to toe width based on 1:1 cover material slope

A7 + (2 X distance at
0% slope) from slope chart.

Toe to toe width based on 2:1 cover material slope

$A 7+(2 X$ distance at
0% slope) value from slope chart.

Minimum Width of Required Native Soil Infiltration Area from A11

Minimum Width of At-grade Cover Material

The Greater Value of the Width Based on Chosen Cover Material Slope or Box A11

Step 13) Minimum Width of Cover Material; Up-Slope Edge of Chambers to Downslope Toe of Cover Material - Site slope greater than 1\%;
Choose Side Slope of LFH At-grade Cover Material;

Effluent Application Width From A7

Effluent Application Width From A7

Minimum Native Soil Infiltration Width From A11

Enter the Greater Width of:
A13a, A13b, or A11

Width of Cover Material From Up-slope
Edge of Chambers to Downslope Toe of Cover Material

Step 14) Determine Width of Upslope Berm

Step 15) Determine Toe to Toe Width of LFH At-Grade on Site Slope Greater Than 1\%

From A13

From A14a or A14b
$=$
 A15
Toe to Toe Width on Sites with
Slope Greater Than 1 \%
April 2, 2014

LFH At-grade Cover Material Slope Distance in Feet @ 1 :1 Berm slope

Upslope Cover Material distance $\boldsymbol{=}$ Height of LFH At-grade at edge of chamber / ($1.0+[$ slope\% / 100] $)$
Downslope Cover Material Distance $=$ Height of LFH At-grade at edge of chamber / (1.0 - [slope\% / 100])

LFH At-grade Cover Material Slope Distance in Feet @ 2 :1 Berm slope

Height of LFH At-grade at edge of chamber(s)

Upslope Cover Material distance $=$ Height of LFH At-grade at edge of chamber / ($0.5+[$ slope\% / 100])
Downslope Cover Material Distance $=$ Height of LFH At-grade at edge of chamber $/(0.5-[$ slope\% / 100] $)$

