Alberta Greenhouse Gas Quantification Methodologies

Chapter 15: Aggregate Facilities

Albertan

2 Chapter 15 Table of Contents

3	15. A	ggregate Facilities	1
4	15.1. lı	ntroduction	1
5	15.2. S	tationary Fuel Combustion (SFC) Sources	2
6	15.2.1	I. Fuel Consumption and Composition for SFC	2
7	15.2.2	2. Stationary Fuel CO ₂ Combustion Emissions	4
8	15.2.3	 Stationary Fuel Combustion CH₄ and N₂O Emissions 	8
9	15.2.4	1. Variable Fuel Emission Factors	9
10	15.3. F	laring Emissions	11
11 12	15.3. ²	 Method 15-11 – Flaring CO₂ and CH₄ Emissions for Single Flare Gas Stream based on Default Emission Factors. 	11
13	15.3.2	2. Method 15-12 – Flaring CO ₂ and CH ₄ Emissions for Multiple Flared Gas Streams	13
14	15.3.3	 Method 15-13 – Flaring N₂O Emissions 	16
15	15.4. A	ggregate Facility Production Quantification	17
16	15.4.1	I. Method 15-14 – Petrinex production volumes	17
17			
18	Figures	5	
19	Figure 15-	1: Example of an aggregate facility	15-1
20	Figure 15-	2: An example of the facility activity page for a typical COG facility	15-17
21			
22	Tables		
23	Table 15-2	I: Quantification Methodologies for Conventional Oil and Gas Facilities	2
24	Table 15-2	2: Default Fuel Gas and Carbon Dioxide Emission Factor	5
25	Table 15-3	3: Carbon Dioxide Emission Factors for Non-Variable Fuels	6
26	Table 15-4	4: Default emission factors for non-variable fuel types	8
27	Table 15-	5: Sector based CH ₄ and N ₂ O emission factors for fuel gas	10
28	Table 15-6	6: Technology based CH₄ and N₂O emission factors for fuel gas	10

ii

32

- 33
- 34

² 15. Aggregate Facilities

³ 15.1. Introduction

1

This chapter provides quantification methodologies for stationary fuel combustion emissions, flaring emissions and production volumes for aggregate facilities regulated under the Technology Innovation and Emissions Reduction (TIER) Regulation. The quantification methodologies prescribed in this chapter are applicable for both benchmark applications and annual compliance reports. These methodologies are not applicable for other facilities regulated under TIER.

8 An aggregate facility consists of two or more conventional oil and gas (COG) facilities. Further, multiple sites may be

9 integrated in operation and be identified as a single COG facility within an aggregate facility provided each site emits less than
 100,000 tonnes CO₂e. Figure 15-1 provides an example of an aggregate facility.

16

17 Throughout this chapter, criteria are provided on how to remain consistent in the application of methodologies between the

benchmark and compliance periods. Methods selected for COG facilities within the aggregate facility must be the same in the
 benchmark and compliance report. Should methods change following the benchmark setting period, a conservative
 methodology for re-benchmarking will apply.

Quantification methodologies for aggregate facilities are not classified by levels. The aggregate facilities should choose the
 most suitable methodologies for their operations and availability of data. Table 15-1 outlines the quantification methodologies
 used to quantify fuel consumption, emissions for stationary fuel combustion sources, flaring emissions and production for each
 COG within the aggregate.

- 25
- 26
- 27

1 Table 15-1: Quantification Methodologies for Aggregated Conventional Oil and Gas Facilities

Categories	Methods		
	Method 15-1 – Single gas stream approach		
Fuel Consumption for SFC	Method 15-2 – Multiple gas stream approach		
	Method 15-3 – Non-Petrinex fuel		
	Method 15-4 – Default CO ₂ emission factor for fuel gas		
Carbon Dioxide (CO ₂) Emissions	Method 15-5 – Default CO ₂ emissions factors for non-variable fuels not reported in Petrinex		
for SFC	Method $15-6 - CO_2$ emissions based on Higher heating value correlation		
	Method 15-7 – CO ₂ emissions based on fuel gas carbon content		
	Method 15-8 – Non-variable fuel emission factors		
Methane (CH₄) and Nitrous Oxide (N₂O) Emissions for SFC	Method 15-9 – Variable fuel sector-based emission factors		
	Method 15-10 – Variable fuel technology-based emission factors		
Flaring CO ₂ and CH ₄ emissions	Method 15-11 – Default single flaring gas emission factor		
	Method 15-12 – Multiple flare gas streams		
Flaring N ₂ O Emissions	Method 15-13 – Emission Factors		
Production	Method 15-14 – Petrinex production volumes		

2

³ 15.2. Stationary Fuel Combustion (SFC) Sources

SFC sources are devices that combust solid, liquid, or gaseous fuel, generally for the purposes of providing useful heat or
energy for industrial, commercial, or institutional use. Stationary fuel combustion sources include, but are not limited to boilers,
simple and combined-cycle combustion turbines, engines, emergency generators, portable equipment, process heaters,

7 furnaces and any other combustion devices or systems (e.g., blasting for mining purposes and drilling and completion

8 activities). This source category does not include flare emission sources or waste incineration.

- 9 The primary greenhouse gases that are emitted from stationary fuel combustion are carbon dioxide (CO₂), methane (CH₄), and 10 nitrous oxide (N₂O).
- This section provides quantification methodologies of the fuel consumption and emissions for SFC. Based on the Table 15-1 SFC emission methods, the simplest approach for SFC emissions quantification is to apply:
- Method 15-1 for fuel consumption;
- Method 15-4 and/or Method 15-5 for carbon dioxide emissions; and
- Method 15-8 and/or Method 15-9 for methane and nitrous oxide emissions.

¹⁶ 15.2.1. Fuel Consumption and Composition for SFC

17 Introduction

- 18 Fuel gas streams are characterized by varying gas compositions and higher heating values. Common fuels consumed at
- 19 COGs include fuel gas and non-variable fuels such as propane, diesel, and gasoline.
- 20 Fuel consumption at individual COGs may be calculated using the following methods:
- Method 15-1 Fuel gas consumption based on a single gas stream treatment for reported fuels in Petrinex.
- Method 15-2 Multiple gas streams based on varying fuel gas compositions for reported fuels in Petrinex.

- Method 15-3 Fuel consumption of non-variable fuels or fuel gas not reported in Petrinex based on internal metering, third-
- 2 party custody metering or invoices.
- 3 One or a combination of methods may be used at an individual COG to determine fuel consumption if the COG has both
- Petrinex fuels and non-Petrinex fuels. However, for reported fuels in Petrinex, the person responsible may only use Method
 15-1 or Method 15-2 for each COG, not both.
- 6 TIER is not intended to double price emissions from fuel consumption. If fuels used at an aggregate facility have already been
- subject to carbon pricing during a period when a federal fuel exemption certificate was in place, the emissions associated with
 these fuels should be excluded from the facility's direct emissions for compliance reporting.

9 Equation

10 Equation 15-1 is used for the summation of fuels by fuel type for each COG.

11
$$v_{fuel i,p} = \sum_{n=1}^{N} v_{fuel,i,p,n}$$

Equation 15-1

12 Where:

Vfuel, i, p	=	Total volume of fuel consumed for fuel type i at a COG in cubic meters (m ³ or kl) at standard conditions (15°C, 1 atm) during reporting period, p .
i	=	Fuel gas type
р	=	Reporting period
Vfuel, i,p,n	=	Volume of fuel for fuel type, i, combusted (m ³ or kl). For fuel gas, the volume must be at standard conditions (15°C, 1 atm) at site, n, within the COG during the reporting period, p .
Ν	=	Total number of sites within the COG that uses fuel type i.

13 Method 15-1 – Single fuel gas stream approach

14 Introduction

- 15 For this method, fuel gas volumes reported in Petrinex for a COG may be assumed to have the same gas composition and
- higher heating value (i.e., single fuel gas stream). For these volumes of fuel gas, a default carbon dioxide emission factor
- 17 would be applied to calculate the carbon dioxide emissions (refer to Method 15-4).

18 Equation

Using Equation 15-1, the fuels reported in Petrinex consumed by a COG are summed for the reporting period assuming that
 there is one fuel gas stream (i = 1) in the COG.

21 Method 15-2 – Multiple fuel gas stream approach

22 Introduction

- 23 For this method, a COG is required to quantify the fuel gas consumed for each fuel gas stream that is consumed at the COG.
- Fuel gas streams are characterized by different gas compositions and higher heating values (HHV). This method may be used with Method 15-6 or Method 15-7 to calculate the CO₂ emissions for the COG.

26 Equation

Using Equation 15-1, the total quantity of fuel gas consumed is calculated for each fuel gas stream (i >1) consumed at a COG for the reporting period.

29 Data requirements

- The separation of fuel gas streams must be demonstrated by metering and gas compositional analysis that is representative
 of the different fuel gas streams consumed by the COG in the reporting period.
- Quarterly sampling and analysis for fuel gas composition and/or HHVs is required to characterize the different fuel gas
 streams at a COG.
- The average gas composition and/or HHV must be calculated for each fuel gas stream using a weighted-average approach
 as described in Chapter 17.

Chapter 17 provides further guidance on acceptable analytical methods that may be used for gas composition or heating
 value analysis.

3 Method 15-3 – Non-Petrinex Fuel

4 Introduction

- 5 This method is required for quantifying fuel volumes that are not reported in Petrinex. Fuels that are typically not reported in
- 6 Petrinex include non-variable fuels such as propane, diesel, and gasoline and these fuels are normally invoiced by third-party.
- 7 As well, there may be fuel gases not reported in Petrinex that are measured by the facility internally or by a third-party supplier.
- 8 For volumes of non-variable fuels, default carbon dioxide emission factors are applied to calculate the carbon dioxide
- 9 emissions (refer to Method 15-5). For volumes of fuel gases, the reporter may use Method 15-4, Method 15-6, or Method 15-7
 10 to calculate the carbon dioxide emissions.

11 Equation

Using internally measured or third-party fuel volumes and Equation 15-1, the total fuel consumption is calculated for each type of non-variable fuel or fuel gas consumed at the COG for the reporting period.

14 Data requirements

- Evidence of third-party custody metering may be in the form of invoices or other third-party documentation.
- Fuel consumption may be provided on an energy or volume basis. If the consumption is in energy units, it must be based on
 the higher heating value of the fuel.
- Internal facility metering should follow the requirements prescribed in Chapter 17 of the AQM.

¹⁹ 15.2.2. Stationary Fuel CO₂ Combustion Emissions

20 Method 15-4 – CO₂ emissions based on default fuel gas emission factor (EF)

- CO₂ emissions quantification methods are provided for use if the required gas analysis is available in a COG. In a COG, the same methodologies must be applied.
- 23 The quantification methodologies in this chapter are adapted from Chapter 1 Stationary Fuel Combustion with some
- 24 adjustments. It is assumed that solid fuels are not combusted at aggregate facilities therefore quantification methodologies for
- solid fuels are not prescribed in this chapter. If there are solid fuels combusted at an aggregate facility, quantification
- 26 methodologies prescribed in Chapter 1 must be used.

28 Introduction

- For this method, the CO₂ emissions are calculated assuming a single fuel gas stream and a default emission factor in tonnes of CO₂ emissions per cubic metre of fuel consumed (tCO₂/m³). The default emission factors are presented in Table 15-2. This method is used with fuel gas volumes calculated by Method 15-1.
- 32 If this method is selected by using the default rich gas emission factor for a COG in the benchmark, it must be used for the 33 compliance reports to keep the methodology consistent in the benchmark and compliance reports.
- If the person responsible for an aggregate facility would like to apply different methodologies for a COG, they must revise their benchmark and/or compliance report to ensure that the same methodologies are applied for both the benchmark and compliance report, or a more conservative method is used for the benchmark than the compliance report.
- The person responsible for a COG or group of COGs is required to apply a default sales gas emission factor for the benchmark period if the person would like to:
- 39 (1) apply gas compositions or HHV to calculate CO₂ emissions and do not have the required gas compositions or HHV
 40 for the benchmark period; or
- (2) change methodologies from using the default CO₂ emission factor to gas composition or HHV to calculate CO₂
 emissions for compliance reporting and do not have the required gas compositions or HHV for the benchmark period,
- The default sales gas composition and emission factor is provided in Table 15-2 can only be applied for the above two scenarios.

1 Equation

- 2 Using Equation 15-4, the carbon dioxide emissions for a COG are calculated using the fuel gas volumes calculated by Method
- 3 15-1 and the default emission factor presented in Table 15-2.

4
$$CO_{2,p} = v_{fuel,p} \times EF_{vol}$$

5 Where:

CO _{2, p}	=	CO_2 mass emissions for total fuel combustion for the reporting period, p (tonnes CO_2) in a COG.
V fuel, p,i	=	Total volume of fuel consumed in cubic metres (m ³) for the reporting period, p at standard conditions (15°C, 1 atm) calculated using Method 15-1.
EF _{vol}	=	Default CO_2 emission factor from Table 15-2 in tonnes of CO_2 per cubic metres (t CO_2/m^3).

Equation 15-4

6

7 Table 15-2: Default Fuel Gas and Carbon Dioxide (CO₂) Emission Factors

Parameter	Default Values					
For Benchmarking and Compliance Reporting ¹ :						
Default Carbon Dioxide Emission Factor (volume basis (tCO ₂ /m ³)	0.00233					
Default Rich Gas Composition (vol%)						
Methane (CH ₄)	80					
Ethane (C ₂ H ₆)	15					
Propane (C ₃ H ₈)	5					
Default Higher Heating Value (GJ/m ³)	0.04477					
For Benchmarking only ² :	•					
Default Carbon Dioxide Emission Factor (volume basis) (tCO ₂ /m ³)	0.00190					
Default Sales Gas Composition (vol%)						
Methane (CH ₄)	98					
Ethane (C ₂ H ₆)	1					
Propane (C ₃ H ₈)	0.3					
Butane (C ₄ H ₁₀)	0.1					
Carbon Dioxide (CO ₂)	0.3					
Nitrogen (N ₂)	0.3					
Default Higher Heating Value (GJ/m ³)	0.03825					

8 9

10

1. The prescribed CO_2 emission factor must be used for the benchmark and compliance report.

2. If a COG would like to use gas compositions or HHV to calculate CO₂ for compliance reporting but does not have gas

compositions or HHV data for the benchmark period, the COG must apply this default emission factor for benchmarking.

1 Method 15-5 – CO₂ emissions for non-variable fuels not reported in Petrinex

2 Introduction

3 This method is used to calculate carbon dioxide emissions from non-variable fuels that are not reported in Petrinex for an

4 aggregate. These fuels include propane, diesel, and gasoline that are purchased for onsite operations. The compositions of

5 these fuels are assumed to be fairly constant and therefore are provided default carbon dioxide emission factors. This method

6 is used with fuel quantities calculated using Method 15-3.

7 Note that on-site transportation emissions should not be included with the stationary fuel combustion emissions.

Fuel consumption may be provided by the third-party supplier on a volume or energy basis. Emission factors based on tonnes
 of CO₂ emissions per volume basis or energy basis are provided in Table 15-3.

10 Equation

Using Equation 15-5 or 15-5a, the CO₂ emissions are calculated using the fuel volumes calculated by Method 15-3 and the default emission factor for the non-variable fuel presented in Table 15-3 for an aggregate.

$CO_{2,p,i} = v_{fuel,p,i} \times HHV_i \times EF_{ene,i}$	Equation 15-5
$CO_{2,p,i} = (v_{fuel,p,i} \times EF_{vol,i}) \text{ or } (ENE_{fuel,p,i} \times EF_{ene,i})$	Equation 15-5a

15 Where:

13

14

CO _{2, p, i}	=	CO_2 mass emissions for the non-variable fuel type <i>i</i> for the reporting period, <i>p</i> (tonnes CO_2) for an aggregate.
Vfuel, p,i	=	For Equations 15-5 and 15-5a, the volume of fuel for fuel type i combusted in kilolitres (kl) combusted during reporting period, p , for an aggregate
$ENE_{fuel,p,i}$	=	For Equation 15-5a, energy of fuel for fuel type i in gigajoules (GJ) combusted during reporting period, p , for an aggregate
$HHV_{p,i}$	=	Measured or supplied higher heating value in gigajoules per kilolitres (GJ/kl) for fuel type i for the reporting period, p , for an aggregate
EF _{vol} ,i EF _{ene,i}	=	Fuel-specific default CO_2 emission factor for fuel type <i>i</i> from Table 15-3 in tonnes of CO_2 per volume units (kl) or energy units (GJ).

16

17 Table 15-3: Carbon Dioxide (CO₂) Emission Factors for Non-Variable Fuels

Non-Variable Fuels	CO ₂ Emission Factor ²				
Non-variable rueis	tonne/kl	tonne/GJ			
Diesel	2.681	0.0699			
Diesel in Alberta ¹	2.610	0.06953			
Gasoline	2.307	0.069			
Gasoline in Alberta ¹	2.174	0.06540			
Butane	1.747	0.0614			
Ethane	0.986	0.0573			
Propane	1.515	0.0599			

Fuels that are impacted by Alberta's Renewable Fuels Standard, where gasoline and diesel emission factors are adjusted to account for required biofuel content.

20 2. Emission factors adapted from ECCC Canada's Greenhouse Gas Quantification Requirements

1 Method 15-6 – CO₂ emissions based on higher heating value correlation

2 Introduction

- 3 This method is consistent with ECCC's Canada's Greenhouse Gas Quantification Requirements for calculating CO₂ mass
- emissions from fuel gas combustion based on the measured HHV. The volumes of fuel gas consumed by a COG is calculated
 based on Method 15-2 or Method 15-3.

6 Equation

- 7 Using Equation 15-6, the CO₂ emissions for a COG are calculated based on the HHV of the fuel gas provided by the fuel
- 8 supplier or measured by the facility.

$$CO_{2,p,i} = v_{fuel,i,p} \times (65.53 \times HHV_{p,i} - 581.9) \times 10^{-6}$$
 Equation 15-6

10 Where:

9

CO _{2, p,i}	=	CO_2 mass emissions for the fuel type <i>i</i> combusted during the reporting period, <i>p</i> (tonnes CO_2), for a COG
Vfuel,i p	=	Volume of fuel (m ³) for fuel type <i>i</i> at standard conditions (15°C, 1 atm) combusted during reporting period, p , for a COG
$HHV_{p,i}$	=	Weighted average higher heating value of fuel type i (MJ/m ³) at standard conditions (15°C, 1 atm) for the reporting period, p , for a COG
(65.53 × HHV _{p,i} - 581.9)	=	Empirical equation adapted from ECCC (grams of CO_2 per cubic meter of natural gas) representing relationship between CO_2 and volume of gas determined through higher heating value using a discrete set of data collected by ECCC.
10 ⁻⁶	=	Mass conversion factor (t/g).

11 Data requirements

Quarterly sampling and analysis for the fuel gas HHVs is required for each fuel gas stream identified in the COG. Sampling
 frequencies prescribed in Table 17.1 of Chapter 17 does not apply for this method.

The HHV must be calculated for each fuel gas stream using a weighted-average approach. Chapter 17 provides guidance
 for calculating weighted averages and acceptable analytical methods than can be used for heating value analysis.

16 Method 15-7 – CO₂ emissions based on fuel gas carbon content

17 Introduction

- 18 This method is used for variable fuels and is based on the complete oxidation of the measured carbon content in the fuel gas.
- 19 The volumes of fuel gas consumed by a COG is calculated using Method 15-2 or Method 15-3.

20 Equation

- Using Equation 15-7a or Equation 15-7b, the CO_2 emissions are calculated based on the carbon content of each fuel gas type consumed during the reporting period.
- 23 For gaseous fuels, where fuel consumption is measured on a volume (m³) basis, use Equation 15-7a:

24
$$CO_{2,p,i} = v_{fuel\,(gas),i,p} \times CC_{gas,p,i} \times 3.664 \times 0.001$$
 Equation 15-7a

For gaseous fuels, where fuel consumption is measured on an energy (GJ) basis, use Equation 15-7b:

26
$$CO_{2,p,i} = \frac{ENE_{fuel (gas),i,p} \times CC_{gas,p,i} \times 3.664 \times 0.001}{HHV_{p,i}}$$
 Equation 15-7b

27 Where:

 $CO_{2,p,i}$ = CO_2 mass emissions for fuel type *i* combusted during the reporting period, *p* (tonnes CO_2), for a COG.

Vfuel(gas),i, p	=	Volume of fuel (m ³) for fuel type <i>i</i> at standard conditions (15°C, 1 atm) combusted during reporting period, <i>p</i> , for a COG
ENE _{fuel(gas)} ,p	=	Energy of fuel (GJ) for fuel type, <i>i</i> at standard conditions (15°C, 1 atm) combusted during reporting period, p , for a COG.
HHV _{p,i}	=	Weighted average higher heating value of fuel type <i>i</i> (GJ/m ³) at standard conditions (15°C, 1 atm) for the reporting period, p , for a COG
CC _{gas,p}	=	Weighted average carbon content of fuel type <i>i</i> at standard conditions (15°C, 1 atm) during the reporting period <i>p</i> . CC_p is in units of kilogram of carbon per standard cubic metre of gaseous fuel (kg C/m ³), for a COG.
3.664	=	Ratio of molecular weights, CO ₂ to carbon.
0.001	=	Mass conversion factor (t/kg).

1 Data requirements

- The carbon content may be provided by the third-party supplier or measured by the facility.
- Quarterly sampling and analysis for gas composition is required for each fuel gas stream identified in the COG. The gas
- 4 composition must be calculated for each fuel gas stream using a weighted-average approach. Chapter 17 provides
- 5 guidance on calculating weighted averages and acceptable analytical methods that can be used for gas compositional
- 6 analysis. Note that sampling frequencies in Table 17.1 of Chapter 17 do not apply for this method.

⁷ 15.2.3. Stationary Fuel Combustion CH₄ and N₂O Emissions

- For all COGs, the following methods are used to calculate the CH₄ and N₂O mass emissions based on default emission factors
 that are volume or energy basis.
- 10 There are three types of default CH₄ and N₂O emission factors specified under three methods. Method 15-8 provides emission
- factors for non-variable fuels; while Methods 15-9 and 15-10 provides emission factors for variable fuels that are sector-based and technology-based, respectively.
- 13

14 Method 15-8 – Non-variable Fuel Emission Factors

For all non-variable fuels such as propane, diesel, and gasoline, methane and nitrous oxide emission factors are prescribed in
 Table 15-4.

17 Table 15-4: Default Emission Factors for Non-variable Fuel Types

Non-Variable Fuel	CO ₂ Emission Factor ¹		CH₄ Emission Factor ¹		N ₂ O Emission Factor ¹	
	tonne/kl	tonne/GJ	tonne/kl	tonne/GJ	tonne/kl	tonne/GJ
Diesel for All industry	2.681	0.0699	7.8E-05	2.0E-06	2E-05	5.8E-07
Diesel in Alberta ²	2.610	0.06953	See note 3			
Biodiesel for all industry	See note 4		7.8E-05	2.2E-06	2E-05	6.3E-07
Gasoline	2.307	0.069	1E-04	3.0E-06	2E-05	6E-07
Gasoline in Alberta ²	2.174	0.06540		S	See note 5	
Ethanol	See note 4		1E-04	4.3E-06	2E-05	8.5E-07
Butane	1.747	0.0614	2.4E-05	8.4E-07	1.08E-04	3.8E-06
Ethane	0.986	0.0573	2.4E-05	1.4E-06	1.08E-04	6.3E-06

Non-Variable Fuel	CO ₂ Emission Factor ¹		CH ₄ Emission Factor ¹		N ₂ O Emission Factor ¹	
	tonne/kl	tonne/GJ	tonne/kl	tonne/GJ	tonne/kl	tonne/GJ
Propane	1.515	0.0599	2.4E-05	9.5E-07	1.08E-04	4.3E-06

- 1 1. Emission factors adapted from ECCC Canada's Greenhouse Gas Quantification Requirements, as amended from time to time.
- Fuels that are impacted by Alberta's Renewable Fuels Standard, where gasoline and diesel emission factors are adjusted to account for required biofuel content. If the actual biofuel composition is known, a facility may use the gasoline or diesel CO2 emission factor for the non-biofuel component and the CO2 emission factor prescribed in Chapter 14 for the biofuel component.
- 5 3. Diesel CH4 and N2O emission factors are used.
- 6 4. CO2 emission factors are provided in Table 14-1 in Chapter 14. CO2 emissions from biodiesel and ethanol should be reported under the biomass emissions.
- 8 5. Gasoline CH4 and N2O emission factors are used.

⁹ 15.2.4. Variable Fuel Emission Factors

Two types of emission factors are presented for variable fuels. Sector-based emission factors and technology-based emission factors are described in Method 15-9 and 15-10 respectively.

12 Method 15-9 – Variable fuel sector-based emission factors

- 13 For variable fuels, the person responsible may select sector-based emission factors that are presented in Table 15-5, if the
- 14 selection criteria below have been met.

15 Method 15-10 – Variable fuel technology-based emission factors

For variable fuels, the person responsible may select technology-based emission factors provided in Table 15-6 for various equipment present at a COG, if the selection criteria below have been met.

18 Selection Criteria for Method 15-9 or 15-10

- For variable fuels, the person responsible may select sector-based (Method 15-9) or technology-based (Method 15-10)
 methane and nitrous oxide emission factors. The following are the selection criteria:
- The person responsible must apply either the sector-based emission factors (Table 15-5) at a COG or technology-based
 emission factors (Table 15-6) for equipment at a COG.
- The person responsible must apply the same methodologies selected for each COG in the benchmark and compliance
 report.
- If technology-based emission factors are selected for any COG, technology-based emission factors may be different
 between the benchmark and compliance report to reflect technologies that are present at the sites during the benchmark or
 compliance periods. For example, the person responsible may use a NOx uncontrolled boiler emission factor for the
 benchmark, but apply a NOx controlled boiler emission factor in the compliance report to reflect technologies used during
 the compliance period. As well, different technology-based emission factors may be applied within a compliance or
 benchmark period if technologies were replaced within the compliance or benchmark period.
- If a facility has the HHV for the fuel, the energy-based emission factor (tonnes of emissions per gigajoules) must be used to
 calculate the methane and nitrous oxide emissions. Otherwise, the facility may use the volume-based emission factors
 (tonnes of emissions per cubic metre) if heating value data is not available.

34 Equation

Using Equation 15-8 or Equation 15-8a, the CH₄ or N₂O emissions are calculated based on volumes calculated by Method
 15-1, Method 15-2, or Method 15-3.

37
$$CH_{4,p} or N_2 O_p = Fuel_p \times HHV \times EF_{ene}$$
 Equation 15-8

$$CH_{4,p}$$
 or $N_2O_p = Fuel_p \times (EF_{vol} \text{ or } EF_{ene})$ Equation 15-8a

39 Where:

$CH_{4,p}$ or N_2O_p	=	CH ₄ or N ₂ O mass emissions for the specific fuel type for the reporting period, p , (tonnes CH ₄ or N ₂ O).
Fuel _p	=	For Equation 15-8, the quantity of fuel combusted in kilolitres or cubic metres (kl or m ³) at standard conditions (15°C, 1 atm) combusted during reporting period, p . For Equation 15-8a, energy of fuel in gigajoules or quantity of fuel in kilolitres, or cubic metres (GJ, kl, or m ³) combusted during reporting period, p .
ΗΗV _p	=	Measured or supplied higher heating value in gigajoules per kilolitres or cubic metres (GJ/kl or GJ/m ³) at standard conditions (15°C, 1 atm) for the reporting period, <i>p</i> .
EF_{vol},EF_{ene}	=	Fuel-specific default emission factor, from Table 15-4, Table 15-5, or Table 15-6 in tonnes of CH ₄ or N ₂ O per energy units (GJ) or volume units (kl or m ³).

1 Table 15-5: Sector-based CH₄ and N₂O Emission Factors for Fuel Gas

Sectors	CH ₄ Emission	Factor ²	N ₂ O Emission Factor ²	
	tonne/m ³	tonne/GJ	tonne/m ³	tonne/GJ
Oil and Gas Sector and Producer Consumption ¹	6.4E-06	1.4E-04	6.0E-08	1.3E-06

2 1. Emission factors adapted from ECCC Canada's Greenhouse Gas Quantification Requirements, as amended from time to time.

3 Table 15-6: Technology-based CH₄ and N₂O Emission Factors for Fuel Gas

Natural Gas	CH₄ Emiss	ion Factor ¹	N ₂ O Emission Factor ²		
	tonne/m ³	tonne/GJ ³	tonne/m ³	tonne/GJ ³	
Boilers/Furnaces/Heaters					
NOx Controlled	3.7E-08	9.7E-07	1.0E-08	2.7E-07	
NOx Uncontrolled	3.7E-08	9.7E-07	3.5E-08	9.3E-07	
Internal Combustion Engine					
Turbine	1.4E-07	3.7E-06	5E-08	1E-06	
2 stroke lean	2.37E-05	6.23E-04	-	-	
NOx 90-105% Load	-	-	7.77E-07	2.04E-05	
NOx < 90% Load	-	-	4.75E-07	1.25E-05	
4 stroke lean	2.04E-05	5.37E-04	-	-	
NOx 90-105% Load	-	-	1.00E-06	2.63E-05	
NOx < 90% Load	-	-	2.07E-07	5.46E-06	
4 stroke rich	3.76E-06	9.89E-05	-	-	
NOx 90-105% Load	-	-	5.41E-07	1.43E-05	
NOx < 90% Load	-	-	5.56E-07	1.46E-05	

8

9

1. For emission factors adapted from USEPA AP-42, the default emission factor is based on a natural gas heating value of 1,020 British thermal units per standard cubic feet (Btu/scf) for the volume-based emission factor.

2. Emission factors are adapted from USEPA AP-42 Chapters 1 and 3.

3. The energy-based emission factor should be used if the fuel consumption on an energy basis is available. The volume-based emission factor should only be used if the higher heating value or energy of the fuel is not available.

4. The N_2O emission factor is based on 1.5% of the NOx emission factor, as provided in AP-42.

- 11
- 12 13

¹ 15.3. Flaring Emissions

Flaring emissions are direct emissions from the controlled combustion of a gas or liquid stream produced at the facility, used
 for routine, non-routine or emergency disposal of a hazardous waste stream, where the main purpose is not energy
 production. There are a variety of flare and incineration technologies including flare pits, ground flares, flare stacks, enclosed
 flares and incinerators and combustors. Methodologies for flaring/incineration of liquid fuel streams are not presented in this
 chapter.

Typical gases that are flared or incinerated include, but are not limited to waste petroleum gas, refinery or still gas, purge gas,
 pilot or assistance gas, and biogas. Flaring or incineration commonly occurs at the following types of operations:

well testing;

9

11

12

22

23

26

27

- natural gas gathering system;
 - processing plant operations;
 - crude oil production;
- pipeline operations.

Note that carbon dioxide (CO₂) that is entrained in the fuel (or previously referred to as formation CO₂) is reported as an emission in the respective categories that the fuel is consumed in. For example, if there is entrained CO₂ within a fuel that is combusted or flared, it would be included in the CO₂ that is emitted in the stationary fuel combustion or flaring categories, respectively.

¹⁸ The flare combustion efficiency is defined as the mole or volume fraction of combustible carbon in the flare gas that is converted to CO₂ during the flaring process, which can be expressed as a percentage of carbon combusted or oxidized.

For the quantification of flaring emissions, the following flare combustion efficiencies were adopted from flare efficiency and
 thermal oxidizer studies conducted and published by the USEPA:

- 98.0% flare combustion efficiency for unassisted flares. These flares are typically found in remote oil and gas production operations;
- 99.5% flare combustion efficiency for properly operated, highly-turbulent, air- or steam-assisted flares. These flares are typically found in gas plants, upgraders, petroleum refineries, and chemical plants; and
 - 100.0% flare combustion efficiency for incinerators, oxidizers, or other "external combustion" units that operate like boilers. As a conservative approach, methane emissions based on emission factors are still applied.
- 28 Sampling and measurement frequency requirements for different methods are presented in this chapter.

²⁹ 15.3.1. Method 15-11 – Flaring CO₂ and CH₄ Emissions for Single Flare Gas Stream based on Default ³⁰ Emission Factors

31 Introduction

- Carbon dioxide emissions from flares are generated from the oxidization of carbon in the flare gas and from any carbon
 dioxide entrained in the flare gas. Methane in the flare gas that is un-oxidized is released as methane emissions.
- The Default Emission Factor Method is based on default CO_2 and CH_4 emission factors which were developed for different fuel gas types (lean to rich condensate), non-variable fuels (ethane, propane and butane).
- This method provides default emission factors for facilities that do not have gas analysis but have knowledge of the flare gas properties whether it is rich or lean gas being sent to flare stack. CO₂ emission factors are provided in Table 15-7 based on the representative rich gas and sale gas compositions in Alberta.
- ³⁹ Methane emission factors are provided in Table 15-8 representing the un-combusted CH₄ in the flare gas based on the flare
- combustion efficiency. For incineration, methane emissions are conservatively added even though the flare combustion
 efficiency was assumed to be 100%.

Equations 1

2 For each flare source, use Equation 15-9a or Equation 15-9b to calculate the CO₂ and CH₄ mass emissions.

$$GHG = \sum_{F=1}^{N} V_{FL,F} \times EF_{vol,F} \times 10^{-6}$$

$$GHG = \sum_{F=1}^{N} ENE_{FL,F} \times EF_{ENE,F} \times 10^{-6}$$

Equation 15-9b

3 Where:

CHC	_	CO ₂ or CH ₂ mass omissions from floring (tannes) for the reporting pariod
GIIG	-	CO2 of CH4 mass emissions from haring (connes) for the reporting period.
F	=	Flare gas stream.
Ν	=	Total number of flare gas streams.
V _{FL,F}	=	Volume of the flare gas stream, F, at a flare source (standard cubic meters, sm ³) at standard conditions for the reporting period.
ENE _{FL,F}	=	Energy of the flare gas stream, F, at a flare source (MJ) for the reporting period.
EF _{vol,F}	=	Default CO ₂ or CH ₄ emission factor, selected from Table 15-7 or Table 15-8 (g/m ³).
EF _{ENE,F}	=	Default CO ₂ or CH ₄ emission factor, selected from Table 15-7 or Table 15-8 (g/MJ).
10 ⁻⁶	=	Mass conversion factor (tonne/g).

Table 15-7: Default CO₂ Flaring Emission Factors for Different Flare Gas Types 4

			CO₂ Emi	ssion Factor	s			
-	Open Flares						la change and	
Flare Gas Type	Higher Heating	Unassisted 98.0% Efficiency		Assisted 99.5% Efficiency		100% Efficiency		
	(MJ/m ³)							
		(g/m³)	(g/MJ)	(g/m³)	(g/MJ)	(g/m³)	(g/MJ)	
Mixed Gas Types								
Sales gas	38.02	1,853	48.75	1,882	49.49	1,900	49.74	
Rich gas	44.77	2,280	50.93	2,315	51.70	2,330	51.96	
Non-Variable Gas Type	es							
100% Methane (C1)	37.708	1,824	48.37	1,852	49.11	1,861	49.36	
100% Ethane (C2)	66.065	3,648	55.22	3,704	56.07	3,723	56.35	
100% Propane (C3)	93.936	5,472	58.25	5,556	59.15	5,584	59.44	
100% Butane (C4)	121.600	7,296	60.00	7,408	60.92	7,445	61.23	

5 6

2. Molecular weights and HHVs are from Gas Processors Association 2145-09.

Default gas compositions used in the development of the emission factors are: 3.

7 8 Sales gas - 98% CH₄, 1% C₂H₆, 0.3% C₃H₈, 0.1% C₄H₁₀, 0.3% CO₂, 0.3% N₂

9 Rich gas - 80% CH₄, 15% C₂H₆, 5% C₃H₈

1 Table 15-8: Default CH₄ Flaring Emission Factors for Different Flare Gas Types

	Methane Emission Factors								
	Higher		Open	Incineratore					
Flare Gas Type	Heating	Unas	ssisted As		sted	- incinerators			
	Value (MJ/m³)	(98.0% Efficiency)		(99.5% Efficiency)		(100% Efficiency)			
		(g/m³)	(g/MJ)	(g/m³)	(g/MJ)	(g/m³)	(g/MJ)		
Mixed Gas Types									
Sales gas	38.02	13.27	0.35	3.32	0.09	0.037	0.0010		
Rich gas	44.77	10.83	0.24	2.71	0.06	0.044	0.0010		
Non-Variable Gas Typ	es								
100% Methane	37.708	13.54	0.36	3.39	0.09	0.037	0.001		
100% Ethane (C2)	66.065	0.00	0.00	0.00	0.00	0.00	0.00		
100% Propane (C3)	93.936	0.00	0.00	0.00	0.00	0.00	0.00		
100% Butane (C4)	121.600	0.00	0.00	0.00	0.00	0.00	0.00		

2 3

4

5 6 7

8

Flare combustion efficiencies have been applied in the emission factor.
 Methane emission factors for flaring of fuel gases and non-variable gases using incinerator technology are based on Canada's

Greenhouse Gas Quantification Requirements, ECCC GHGRP, December 2019 and are adjusted by HHV of the different fuel types. Molecular weights and HHVs for each single compound are from Gas Processors Association 2145-09.

3. Default gas compositions used in the development of the emission factors are:

• Sales gas - 98% CH₄, 1% C₂H₆, 0.3% C₃H₈, 0.1% C₄H₁₀, 0.3% CO₂, 0.3% N₂

• Rich gas - 80% CH₄, 15% C₂H₆, 5% C₃H₈

9 Data requirements

- The flaring volume can be based on the flaring volume reported to Petrinex by the facility. The volumetric emission factors can then be applied based on the type of flare gas.
- The total flare gas volumes of different flaring efficiencies should align with the reported flaring volumes in Petrinex.
- If a facility finds errors in the reported Petrinex flare volumes or missed flare volumes reported to Petrinex, the facility
 should correct the Petrinex data before applying the corrected flare volumes for an aggregate benchmark and
 compliance reports.
- The methods used for benchmark and compliance reports should be consistent for a conventional oil and gas (COG)
 of the aggregate facility.
- If a COG of the aggregate facility uses gas analysis for compliance reports and the gas analysis is not available in the
 benchmark development, the facility must use the sale gas emission factor for the benchmark.
- Based on the facility's knowledge of the flare gas composition and flare technology, select the flare gas type that
 would best align with the flare gas consumed and the appropriate emission factors from Tables 15-7 and 15-8.

²² 15.3.2. Method 15-12 – Flaring CO₂ and CH₄ Emissions for Multiple Flared Gas Streams

23 Introduction

This method uses estimated or measured gas volumes and compositions for all or part of flare gas streams to calculate CO₂
 and CH₄ emissions. The method is applicable for multiple flare gas streams that are flared under routine or non-routine
 conditions.

²⁷ Flare gas streams may have measured volumes and compositions of gases that are routinely flared such as assistant gas,

pilot gas, or purge gas streams and unmeasured streams from venting sources or emergent blowdowns. These measured

flare gas streams may be equipped with online analyzers or measured regularly. Unmeasured volumes or compositions of

³⁰ flare gas may be calculated based on engineering estimates, manufacturer specifications or fuel mass balance method.

1 **Equations** 2 For each flar 3 flare gas stre

- ² For each flare source, use Equation 15-10a and 15-10b to calculate the total CO₂ mass emissions from the flaring of multiple
- ³ flare gas streams that are combined.

$$CO_{2,flaring} = \sum_{F=1}^{N} \frac{V_{FL,F}}{MVC} \times \left(CC_F \times CE_{FL} + MF_{CO_2}\right) \times MW_{CO_2} \times 0.001$$
 Equation 15-10a

$$CC_F = \sum_{i=1}^{I} MF_{i,F} \times NC_{i,F}$$
 Equation 15-10b

4 Where:

CO ₂ , flaring	=	Total CO_2 mass emissions from a flare source including entrained CO_2 for the reporting period (tonnes).
Ν	=	Total number of flare gas streams.
F	=	Flare gas stream.
$V_{FL,F}$	=	Measured or estimated vvolume of the flare gas stream, <i>F</i> , (sm ³) at standard conditions for the reporting period.
MVC	=	Standard molar volume conversion at standard molar volume as defined in Appendix B, Table B-2 (23.645 m ³ /kmol).
CCF	=	Average carbon content for flare gas stream, F, $(kmol_{carbon}/kmol_{flare gas, F})$ for the reporting period. This excludes carbon from entrained CO ₂ in the flare gas.
MF _{CO2}	=	CO ₂ mole fraction in flare gas stream, F.
MW _{CO2}	=	Molecular weight of CO ₂ (kg/kmol), as provided in Appendix B.
0.001	=	Mass conversion factor (tonne/kg).
I	=	Total number of components in the flare gas stream, F.
i	=	Type of component.
CE _{FL}	=	Flare combustion efficiency (%).
$MF_{i,F}$	=	Normalized mole fraction of component, i, based on the estimated or measured weighted average flare gas composition in the flare gas stream, F, (kmol i/kmol _{flare gas}) for the reporting period.
NC i,F	=	Number of carbons in component, i, in the flare gas stream, F.

⁶ For methane emissions, use Equation 15-11 to calculate un-combusted methane from the flare gas:

$$CH_{4,flaring} = \sum_{F=1}^{n} [V_{FL,F} \times MF_{CH4,F}] \times (1 - CE_{FL}) \times \frac{CH_4}{MVC} \times 0.001$$
 Equation 15-11

7 Where:

CH ₄ , flaring	=	Total CH ₄ mass emissions from a flare source for the reporting period (tonnes);
V _{FL,F}	=	Measured or estimated volume of flare gas stream, F, (sm ³) at standard conditions for the reporting period.

	MF _{CH4,F}	 Normalized mole fraction of CH₄ in estimated or measured average flare gas composition for flare gas stream, F (kmol_{CH4}/kmol_{GAS}) for the reporting period. 				
	n	= Number of flare gas streams.				
	F	= Flare gas stream.				
	CE _{FL}	= Flare combustion efficiency (%).				
	CH ₄	= Molecular weight of CH ₄ (kg/kmol), as provided in Appendix B.				
	MVC	 Standard molar volume conversion at standard conditions as provided in Appendix B, Table B-2 (23.645 m³/kmol). 				
	0.001	= Mass conversion factor (tonne/kg).				
1 2	Data Requirements The following data r	equirements are applicable:				
3	• The total flare vol	umes for all multiple flare streams should be equal to the reported flare volumes in Petrinex.				
4 5 6	 For a flare gas str composition analy gas stream. 	eam that is measured, if there is an online continuous flow measurement device or a continuous gas zer, the measured flow volumes and gas composition must be used to calculate emissions for the flare				
7 8	 The volu meter ar 	me and gas composition measurements must be taken daily if there is online instrumentation (i.e., flow d gas analyzer) or monthly if no online instrumentation is available.				
9 10 11	 A weight frequence facility m 	 A weighted gas composition must be used in calculating emissions and is based on the minimum sampling frequency that the samples are conducted. If the sampling frequency is higher than the prescribed frequency, the facility must apply the higher frequency in the weighted average. 				
12	Volumes and com	Volumes and compositions of flare gas streams must be measured using:				
13	 One of the 	e analytical methods required by AER Directives and other applicable regulatory requirement; or				
14	• The mos	t appropriate method published by a consensus-based standards organization.				
15	• For pilot or assista	ance gas used for flaring,				
16 17	 Where the composition 	e fuel type is known (i.e., propane, butane, rich gas, sales gas, etc.), the facility may use the default gas ion of the fuel type listed in Table 15-7 and Table 15-8.				
18 19	 The volu approach 	me or gas composition of the flare pilot or assistance gas may be calculated using a mass balance as described in Method 1-4 in Section 1.2.5 in Chapter 1.				
20 21	 If they an frequence 	e measured, may apply measured gas compositions consistent with the sampling or measurement ies outlined in Table 17-1 of the AQM.				
22 23	• The volume and g estimates, a mass	The volume and gas composition of the remaining unmeasured flare gas streams may be estimated using engineering estimates, a mass balance, or manufacturer specifications.				
24 25 26	 For a waste gas f emission source, Refer to the data 	are stream where the volume is not measured, but the flare gas stream is from a controlled venting the venting volume may be quantified using quantification methodologies provided in Chapter 4 Venting. requirements in Section 2.3.2 (Method 2-1).				
27 28	If flare gas volume outlined in Section	es and/or gas composition measurements are missing in a reporting period, the missing data procedures a 17.5.2 of Chapter 17 should be followed.				
29 30 21	• The facility must s facility. The select	The facility must select a default flare combustion efficiency that best represents the flare technology that is applied at the facility. The selection must be supported by manufacturer specification or test data. The default flare combustion				

- If the sum of the mole fractions of components do not add up to 1.000 because smaller components are excluded from
- 2 the analysis or are not measurable, facilities must normalize the mole fractions of the measured components in order for
- 3 the sum of the mole fractions to equal 1.000.

⁴ 15.3.3. Method 15-13 – Flaring N₂O Emissions

5 Introduction

Default N₂O emission factors are assumed to be independent of the flare combustion efficiencies and dependant on flare gas
 type.

8 Equations

9 For each flare source, calculate the N_2O mass emissions using Equation 15-12a or Equation 15-12b.

1	0
1	1

$N_2 O = \sum_{F=1}^N V_{FL,F} imes EF_{vol,F} imes 10^{-6}$	Equation 15-12a
$N_2 O = \sum_{F=1}^{N} ENE_{FL,F} \times EF_{ENE,F} \times 10^{-6}$	Equation 15-12b

12

13 Where:

N ₂ O	=	N_2O mass emissions from a flare source for the reporting period (tonnes of N_2O).
F	=	Flare gas stream.
Ν	=	Total number of flare gas streams.
VFL,F	=	Volume of the flare gas stream, F, at a flare source (sm ³) at standard conditions for the reporting period. Volumes for non-variable fuel types such as ethane, propane and butane are measured in gas phase.
ENE _{FL,F}	=	Energy of the flare gas stream, F, at a flare source (MJ) for the reporting period.
EF _{vol,F}	=	Default N ₂ O emission factor, selected from Table 15-9 (g/m ³).
EF _{ENE,F}	=	Default N ₂ O emission factor, selected from Table 15-9 (g/MJ).

14 15

Table 15-9: Default N₂O Emission Factors for Different Flare Gas Types

Flare Gas Type	N ₂ O			
Trate Gas Type	(g/m³)	(g/MJ)		
Hydrocarbon gas (sales gas and rich gas) ¹	0.033	0.00087		
100% Ethane (C ₂) ³	0.00050	0.0063		
100% Propane (C ₃) ³	0.00035	0.0043		
100% Butane (C ₄) ³	0.00027	0.0038		

16 Note:

17 1. Natural gas combustion emission factor for the industrial sector adapted from ECCC Canada's Greenhouse Gas Quantification

18 Requirements (December 2019).

2. Emission factors are adapted from the Western Climate Initiative (WCI) Final Essential Requirements of Mandatory Reporting 2011
 Amendment.

21 3. Natural gas combustion emission factor for the industrial sector adapted from ECCC Canada's Greenhouse Gas Quantification

22 Requirements (December 2019) and adjusted by the HHV of the fuel for an energy-based emission factor.

Emission factors adapted from Canada's National Inventory Report (NIR) 2016.

¹ Data requirements

- The flare volume can be based on the flare volume reported to Petrinex by the facility. The volumetric emission factors from Table 15-9 can then be applied.
- If a facility finds errors in the reported Petrinex flare volumes or missed reporting flare volumes to Petrinex, the facility should correct the Petrinex data before applying the corrected flare volumes for an aggregate benchmark and/or compliance reports.
- For flaring using method 15-12 with gas measurements for CO₂ emissions calculations for certain gas streams, the same measured volumes as used for CO₂ calculation must be used for N₂O calculation.

⁹ 15.4. Aggregate Facility Production Quantification

Product data quantification and reporting procedures for aggregate facility will be tied to production accounting volumes,
 referred to as Method 15-14.

¹² 15.4.1. Method 15-14 – Petrinex production volumes

The production type that an aggregate facility will report on is based on a benchmark unit assigned or approved by the department. Aggregate facilities production volumes for the product unit should be quantified using the reported volumes in

15 Petrinex for each COG and reported as oil equivalent in cubic meters (OE m³) in the compliance report under TIER. Refer to

16 Chapter 9 of the Standard for Developing Benchmarks for benchmark units (section 9.1.2) and oil equivalent (OE) conversion

17 factors (Table 6) for each product.

ഹ

18 COG facilities in Alberta report volumetric data to Petrinex. Each volumetric submission must identify the activity, the product

and the associated volume. Please refer to Appendix 1, 2, and 3 from Manual 011, published by the Alberta Energy Regulator

20 for the activity and products required to be reported to Petrinex. These volumetric submissions will be the used for

21 quantification and reporting under TIER. Figure 15-2 shows the volumetric submission for an example COG facility in Alberta.

22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	

GURE 15-2: AN EXAMPLE OF THE FACILITY ACTIVITY PAGE FOR A TYPICAL COG FACILITY							
Query Vo	lumetric Sub	omission					
Facility ID: A	B GP 0001234	Location: 00-01-01-001-0	W4 Production Month	2020-01	< >		
Name: Alberta	Gas Plant		Amendment #:		< >		
Reference Co	de:		Submitted:				
			AER Extracted:				
Vie	w: Facility Activity	×					
Filter	s: Activity	Product	From/To				
1 mer							
		ALL					
					Go		
		_					
Save to WIP	Report Cancel						
Activity	Product	From/To	Volume	Energy			
REC	GAS	AB GP 0000001	390.8				
REC	GAS	AB GS 0000001	13977.1				
REC	GAS	AB GS 0000001	370.3				
DISP	GAS	AB MS 0000001	11133.5	448269		ISC	
FUEL	GAS	AB GP 0000001	3029.3				
FLARE	GAS	AB GP 0000001	56.8				
REC	WATER	AB WC	804.1				
DISP	WATER	AB IF 0000001	792.1				
DISP	WATER	AB WP 0000001	12.0				
FRAC	C3-SP		2006.3				
DISP	C3-SP	AB OT	1535.2				
DISP	C3-SP	WA	806.7				
INVOP	C3-SP		526.5				
INVCL	C3-SP		851.0				
FRAC	C4-SP		1564.8				
DISP	C4-SP	AB OT	2681.8				
INVOP	C4-SP		496.8				
INVCI	C4_SP		589.0				

1

2

3 Appendix B

4 **TA**

TABLE B-1: TABLE OF PHYSICAL PROPERTIES FOR HYDROCARBONS AND OTHER COMPOUNDS¹

Component	Chemical Formula	HHV [GJ/e3m3]	Carbon [atoms]	Molar Mass [t/t-mol]
Hydrogen	H ₂	12.102	0	2.0159
Oxygen	O2	0.000	0	31.9988
Helium	Не	0.000	0	4.0026
Nitrogen	N ₂	0.000	0	28.0134
Hydrogen Sulphide	H ₂ S	23.784	0	34.0809
Carbon dioxide	CO ₂	0.000	1	44.0095
Carbon monoxide	СО	11.964	1	28.0100
Methane	CH ₄	37.708	1	16.0425
Ethane	C_2H_6	66.065	2	30.0690
Propane	C ₃ H ₈	93.936	3	44.0956
Isobutane	C_4H_{10}	121.406	4	58.1222
n-Butane	C ₄ H ₁₀	121.794	4	58.1222

Component	Chemical Formula	HHV [GJ/e3m3]	Carbon [atoms]	Molar Mass [t/t-mol]
Isopentane	C ₅ H ₁₂	149.363	5	72.1488
n-Pentane	C ₅ H ₁₂	149.656	5	72.1488
Hexane	C ₆ H ₁₄	177.550	6	86.1754
Heptane	C ₇ H ₁₆	205.424	7	100.2019
Octane	C ₈ H ₁₈	233.284	8	114.2285
Nonane	C_9H_{20}	261.191	9	128.2551
Decane	C ₁₀ H ₂₂	289.067	10	142.2817
Acetylene	C_2H_2	55.038	2	26.0373
Ethylene	C_2H_4	59.724	2	28.0532
Propylene	C ₃ H ₆	86.099	3	42.0797
Hexene	C ₆ H ₁₂	174.068	6	84.1595
Benzene	C ₆ H ₆	139.689	6	78.1118
Toluene	C7H8	167.056	7	92.1384
Heptane	C7H16	205.424	7	95.00
o-Xylene	C8H10	194.484	8	106.1650
m-Xylene	C8H10	194.413	8	106.1650
p-Xylene	C8H10	194.444	8	106.1650

1. GPSA Engineering Handbook Section 23 - Physical Properties.

¹ TABLE B-2: TABLE OF PROPERTIES OF GASES

Component	Description	Value	Units
MVC	Standard Molar Volume for a gas at standard conditions (as defined in Appendix C)	23.645	m³/kmol
MWC	Molecular Weight of Carbon	12.01	t/t-mol