ATT-3/95 BULK ASPHALT CONTENT Part I, Truck Scale Weight Method

1.0 SCOPE

This method describes the procedure for determining the percentage bulk asphalt content based on:

- a) depth measurements of the asphalt storage tanks to determine the amount of asphalt used, and
- b) the weight of dry aggregate as determined by truck scale weight of mix corrected for moisture and asphalt.

2.0 EQUIPMENT

asphalt storage calibration charts calculator tank "dipstick"

Data Sheet: Bulk Asphalt Content, MAT 6-43

3.0 PROCEDURE

- 1. After the asphalt storage tanks have been set up at the plant site, and while they are still empty, obtain the distance to the nearest 0.05 metres from the inside top surface of the tank shell to the bottom of the tank. Record as Total Depth of Tank (line "A"), as shown in Figure 1.
- 2. Obtain the inner length of each tank to the nearest 0.05 m. Obtain or make up calibration charts for the inner length and height of each tank.
- 3. When a bulk asphalt content is required, have the contractor measure the distance to the nearest 0.05 metres from the inside top surface of the tank shell to the top of the surface of asphalt in the tank at the beginning of the day. Record as Beginning Depth of Asphalt from top of tank (line "B").
- 4. Obtain the temperature of asphalt in storage at the time of measurement and record as Beginning Temperature of Asphalt in Tank (line "H").
- 5. Calculate the Depth of Asphalt (in metres) in the storage tank (line "C") as follows:
 - ' Total Depth of Tank & Beginning Depth of Asphalt (from top of tank)
- 6. If asphalt calibration charts are available, use the charts and the Depth of Asphalt in Tank (line "C") to determine the Beginning Volume of Asphalt in Tank and record it on line "G". Then leave lines "D", "E", and "F" blank and proceed to step 11.

BULK ASPHALT CONTENT									
PROJECT NO. 2:28	CONTRACT	T NO. 6666/95			LOT NO.	8			
FROM N. OF DIDSBURY IN	VT.	DATE	95.08.1	2					
TO S. OF OLDS INT.	CONTRA	CTOR	ABC CO	NSTRUCTION					
PROJECT MANAGER M. SMI	TH	TECHNO	LOGIST	B. JON	ES				

	l e e e e e e e e e e e e e e e e e e e						
		TANK 1	TANK 2				
A TOTAL DEPTH OF TANK	4.10	4.50	m				
B BEGINNING DEPTH OF ASPHALT (from top of tank)	2.35	1.85	m				
C DEPTH OF ASPHALT IN TANK	A - B	1.75	2.65	m			
D PERCENT DEPTH FILLED	100 C / A	42.68	58.89	%			
E PERCENT OF CAPACITY FILLED	TABLE 1	40.74	61.22	%			
F CAPACITY OF TANK		100 000	110 000	R			
G BEGINNING VOLUME OF ASPHALT IN TANK	. F / 100 or Calib. Chart	40 740	67 342	R			
H BEGINNING TEMPERATURE OF ASPHALT IN TANK		146	149	EC			
I RELATIVE DENSITY OF ASPHALT AT 15 EC		1.024	1.024	kg/R			
J WT. PER LITRE OF ASPHALT AT TANK TEMPERATU	IRE TABLE 2	0.942	0.9405	kg/R			
K BEGINNING WEIGHT OF ASPHALT IN TANK	G.J	K ₁ 38 377	K ₂ 63 335	kg			
L BEGINNING WEIGHT OF ASPHALT IN TANKS	$K_1 + K_2$	101	101 712				
M WEIGHT OF ASPHALT DELIVERED DURING INTERVA	212	kg					
N TOTAL WEIGHT OF ASPHALT AVAILABLE	313	kg					
O DEPTH OF ASPHALT AT END OF DAY		1.20	3.10	m			
P DEPTH OF ASPHALT REMAINING IN TANK	A - O	2.90	1.40	m			
Q PERCENT DEPTH FILLED	100 P / A	70.73	31.11	%			
R PERCENT OF CAPACITY FILLED	TABLE 1	75.60	26.61	%			
S ENDING VOLUME OF ASPHALT IN TANK	. F / 100 or Calib. Chart	<i>75 600</i>	29 271	R			
T ENDING TEMPERATURE OF ASPHALT IN TANK		150	153	EC			
U WT. PER LITRE OF ASPHALT AT TANK TEMPERATU	IRE TABLE 2	0.940	0.9375	kg/R			
V ENDING WEIGHT OF ASPHALT IN TANK	S.U	V ₁ 71 064	V ₂ 27 442	kg			
W WEIGHT OF ASPHALT REMAINING IN TANKS	$V_1 + V_2$	98	kg				
X WEIGHT OF ASPHALT USED	N - W	215	kg				
Y WEIGHT OF PAID MOIST MIX		3 76	kg				
Z WEIGHT OF REJECTED MIX	Z WEIGHT OF REJECTED MIX						
AA TOTAL WEIGHT OF MOIST MIX	Y + Z	3 79	3 794 350				
BB AVERAGE MOISTURE CONTENT OF MIX		0.	.27	%			
CC WEIGHT OF DRY MIX	100 AA / (100 + BB)	3 78	kg				
DD WEIGHT OF DRY AGGREGATE	CC - X	3 56	kg				
EE BULK ASPHALT CONTENT	6	%					

REMARKS

NOTE: For contractor supplied charts, check if the tank is calibrated i U.S. gallons. To convert U.S. gallons to Imperial gallons, divide the U.S. gallons by 1.20094. To comert Imperial gallons to litres, multiply the Imperial gallons by 4.546.

7. If asphalt calibration charts are not available, calculate the Percent Dept Filled (line "D") using the formula:

Percent Depth Filled (%) '
$$\frac{Depth\ of\ Asphalt\ in\ Tank}{Total\ Depth\ of\ Tank} \times 100\,\%$$

8. Use Table 1 and the Percent Depth filled (line "D") to determine the Percent of Capacity Filled, and record it on line "E".

QUANTITIES FOR VARIOUS DEPTHS OF CYLINDRICAL TANKS IN A HORIZONTAL POSITION

% Depth Filled	% of Capacity Filled						
1	0.20	26	20.73	51	51.27	76	81.50
2	0.50	27	21.86	52	52.55	77	82.60
3	0.90	28	23.00	53	53.81	78	83.68
4	1.34	29	24.07	54	55.08	79	84.74
5	1.87	30	25.31	55	56.34	80	85.77
6	2.45	31	26.48	56	57.60	81	86.77
7	3.07	32	27.66	57	58.86	82	87.76
8	3.74	33	28.84	58	60.11	83	88.73
9	4.45	34	30.03	59	61.36	84	89.68
10	5.20	35	31.19	60	62.61	85	90.60
11	5.98	36	32.44	61	63.86	86	91.50
12	6.80	37	33.66	62	65.10	87	92.36
13	7.64	38	34.90	63	66.34	88	93.20
14	8.50	39	36.14	64	67.56	89	94.02
15	9.40	40	37.39	65	68.81	90	94.80
16	10.32	41	38.64	66	69.97	91	95.55
17	11.27	42	39.89	67	71.16	92	96.26
18	12.24	43	41.14	68	72.34	93	96.93
19	13.23	44	42.40	69	73.52	94	97.55
20	14.23	45	43.66	70	74.69	95	98.13
21	15.26	46	44.92	71	75.93	96	98.66
22	16.32	47	46.19	72	77.00	97	99.10
23	17.40	48	47.45	73	78.14	98	99.50
24	18.50	49	48.73	74	79.27	99	99.80
25	19.61	50	50.00	75	80.39		

TABLE 1

9. Obtain the volume in litres of each asphalt storage tank and records a Capacity of Tank (line "F").

The weight of asphalt delivered by trucks can be used to determine the capacity of the tanks. The capacity in litres of orizontal tanks can also be calculated using the formula:

Capacity (R)
$$\frac{\mathsf{B}\ D^2\ L}{4} \times 1000\ \mathsf{Rm}^3$$
 or 0.7854 $D^2\ L$

Where D = inside diameter of tank (depth of tank), and L = inside length of tank

10. Determine the Volume 6 Asphalt in litres in the storage tank (line "G") using the formula:

$$Vol.$$
 (R) 1 Capacity of Tank \times Percent of Capacity Filled with Asphalt 100%

- 11. Obtain from the Mix Design the Relative Density of Asphalt at 15°C for the grade of asphalt used for the project and record it on line "T".
- 12. Correct the weight per litre of asphalt at 15C to the equivalent weight pe litre at theelevated storage temperature using Table 2 for asphalt cements, Table 3 for cutback asphalts or Table 4 for emulsified asphalts.
- 13. Find in the temperature column the Beginning Temperature of Asphala Tank (line "H"), then proceed across the table to where it intercepts the proper Relative Density of Asphala at 15C (line "I"). Interpolating intermediate values, pick off the Weight per Litre of Asphala at Tan Temperature and record it in line "J".

For example:

Beginning Asphalt Tank Temperature = 13EC
Relative Density of Asphalt Cement at 15C = 1.015
Wt. per Litre of Asphalt at Tank Temperature = 0.940 kg from Table 2

14. Calculate the Weight of Asphalt in kg in the Storage Tank (line "K") sa follows:

- 15. When two tanks are used, add the Beginning Weight of Asphalt for Tank 1 (line "K₁") to the Beginning Weight of Asphalt for Tank 2 (line "K₂") and record as the Beginning Weight of Asphalt in Tanks (line "L")
- 16. Determine the weight of asphalt delivered during the bulk asphalt conten interval (line "M") by totalling the weights of the asphalt delivery slip invoices.

The Senior Technologist is normally responsible for picking up the asphal delivery slip invoices, calculating the weight asphalt added, and forwarding the invoices to the Project Manager.

^{&#}x27; Wt./F of Asphalt at Tank Temperature × Volume of Asphalt in Tank

WEIGHT PER LITRE OF ASPHALT CEMENT CORRECTED TO STORAGE TEMPERATURE (kg/k)

TEMP	RELATIVE DENSITY OF ASPHALT CEMENT AT 15EC									
EC	0.995	1.000	1.005	1.010	1.015	1.020	1.025	1.030	1.035	1.040
90	0.949	0.954	0.958	0.963	0.968	0.973	0.977	0.982	0.987	0.992
92	0.948	0.952	0.957	0.962	0.967	0.971	0.976	0.981	0.986	0.990
94	0.946	0.951	0.956	0.961	0.965	0.970	0.975	0.980	0.984	0.989
96	0.945	0.950	0.955	0.959	0.964	0.969	0.974	0.978	0.983	0.988
98	0.944	0.949	0.954	0.958	0.963	0.968	0.973	0.977	0.982	0.987
100	0.943	0.948	0.952	0.957	0.962	0.967	0.971	0.976	0.981	0.985
102	0.942	0.946	0.951	0.956	0.961	0.965	0.970	0.975	0.980	0.984
104	0.940	0.945	0.950	0.955	0.959	0.964	0.969	0.974	0.978	0.983
106	0.939	0.944	0.949	0.953	0.958	0.963	0.968	0.972	0.977	0.982
108	0.938	0.943	0.948	0.952	0.957	0.962	0.966	0.971	0.976	0.981
110	0.937	0.942	0.946	0.951	0.956	0.960	0.965	0.970	0.975	0.979
112	0.936	0.940	0.945	0.950	0.955	0.959	0.964	0.969	0.973	0.978
114	0.935	0.939	0.944	0.949	0.953	0.958	0.963	0.967	0.972	0.977
116	0.933	0.938	0.943	0.947	0.952	0.957	0.961	0.966	0.971	0.976
118	0.932	0.937	0.941	0.946	0.951	0.956	0.960	0.965	0.970	0.974
120	0.931	0.936	0.940	0.945	0.950	0.954	0.959	0.964	0.968	0.973
122	0.930	0.934	0.939	0.944	0.948	0.953	0.958	0.962	0.967	0.972
124	0.929	0.933	0.938	0.943	0.947	0.952	0.957	0.961	0.966	0.971
126	0.927	0.932	0.937	0.941	0.946	0.951	0.955	0.960	0.965	0.969
128	0.926	0.931	0.935	0.940	0.945	0.949	0.954	0.959	0.963	0.968
130	0.925	0.930	0.934	0.939	0.944	0.948	0.953	0.957	0.962	0.967
132	0.924	0.928	0.933	0.938	0.942	0.947	0.952	0.956	0.961	0.966
134	0.923	0.927	0.932	0.936	0.941	0.946	0.950	0.955	0.960	0.964
136	0.921	0.926	0.931	0.935	0.940	0.945	0.949	0.954	0.958	0.963
138	0.920	0.925	0.929	0.934	0.939	0.943	0.948	0.953	0.957	0.962
140	0.919	0.924	0.928	0.933	0.937	0.942	0.947	0.951	0.956	0.961
142	0.918	0.922	0.927	0.932	0.936	0.941	0.945	0.950	0.955	0.959
144	0.917	0.921	0.926	0.930	0.935	0.940	0.944	0.949	0.953	0.958
146	0.915	0.920	0.925	0.929	0.934	0.938	0.943	0.948	0.952	0.957
148	0.914	0.919	0.923	0.928	0.933	0.937	0.942	0.946	0.951	0.956
150	0.913	0.918	0.922	0.927	0.931	0.936	0.941	0.945	0.950	0.954
152	0.912	0.916	0.921	0.926	0.930	0.935	0.939	0.944	0.948	0.953
154	0.911	0.915	0.920	0.924	0.929	0.934	0.938	0.943	0.947	0.952
156	0.909	0.914	0.919	0.923	0.928	0.932	0.937	0.941	0.946	0.951
158	0.908	0.913	0.917	0.922	0.926	0.931	0.936	0.940	0.945	0.949
160	0.907	0.912	0.916	0.921	0.925	0.930	0.934	0.939	0.943	0.948
162	0.906	0.910	0.915	0.920	0.924	0.929	0.933	0.938	0.942	0.947
164	0.905	0.909	0.914	0.918	0.923	0.927	0.932	0.936	0.941	0.946
166	0.903	0.908	0.913	0.917	0.922	0.926	0.931	0.935	0.940	0.944
168	0.902	0.907	0.911	0.916	0.920	0.925	0.929	0.934	0.939	0.943
170	0.901	0.906	0.910	0.915	0.919	0.924	0.928	0.933	0.937	0.942
172	0.900	0.904	0.909	0.913	0.918	0.922	0.927	0.932	0.936	0.941
					•		•			0.939
										0.938
174 176	0.899 0.897	0.903 0.902	0.908 0.907	0.912 0.911	0.917 0.916	0.921 0.920	0.926 0.925	0.930 0.929	0.935 0.934	

WEIGHT PER LITRE OF CUTBACK ASPHALTS CORRECTED TO STORAGE TEMPERATURE (kg/k)

TEMP	RELATIVE DENSITY OF CUTBACK ASPHALTS AT 15EC									
EC	0.945	0.950	0.955	0.960	0.965	0.970	0.975	0.980	0.985	0.990
10	0.949	0.954	0.959	0.964	0.969	0.973	0.978	0.983	0.988	0.993
12	0.947	0.952	0.957	0.962	0.967	0.972	0.977	0.982	0.987	0.992
14	0.946	0.951	0.956	0.961	0.966	0.971	0.976	0.981	0.986	0.991
16	0.945	0.950	0.955	0.960	0.965	0.970	0.975	0.980	0.985	0.990
18	0.943	0.948	0.953	0.958	0.963	0.969	0.974	0.979	0.984	0.989
20	0.942	0.947	0.952	0.957	0.962	0.967	0.972	0.977	0.982	0.987
22	0.940	0.945	0.950	0.955	0.960	0.966	0.971	0.976	0.981	0.986
24	0.939	0.944	0.949	0.954	0.959	0.965	0.970	0.975	0.980	0.985
26	0.938	0.943	0.948	0.953	0.958	0.964	0.969	0.974	0.978	0.983
28	0.937	0.942	0.947	0.952	0.957	0.962	0.967	0.972	0.977	0.982
30	0.935	0.940	0.945	0.950	0.955	0.961	0.966	0.971	0.976	0.981
32	0.934	0.939	0.944	0.949	0.954	0.960	0.965	0.970	0.975	0.980
34	0.933	0.938	0.942	0.947	0.952	0.959	0.964	0.969	0.974	0.979
36	0.931	0.936	0.941	0.946	0.951	0.958	0.962	0.967	0.972	0.977
38	0.930	0.935	0.940	0.945	0.950	0.957	0.961	0.966	0.971	0.976
40	0.929	0.933	0.938	0.943	0.948	0.955	0.960	0.965	0.970	0.975
42	0.927	0.932	0.937	0.942	0.947	0.954	0.959	0.964	0.969	0.973
44	0.926	0.931	0.936	0.940	0.946	0.953	0.958	0.963	0.968	0.972
46	0.924	0.929	0.934	0.939	0.944	0.951	0.956	0.961	0.966	0.971
48	0.923	0.928	0.933	0.938	0.943	0.950	0.955	0.960	0.965	0.970
50	0.922	0.927	0.932	0.937	0.941	0.949	0.954	0.959	0.964	0.969
52	0.920	0.925	0.930	0.935	0.940	0.948	0.953	0.958	0.962	0.967
54	0.919	0.924	0.929	0.934	0.939	0.947	0.952	0.957	0.961	0.966
56	0.918	0.923	0.928	0.932	0.937	0.945	0.950	0.955	0.960	0.965
58	0.917	0.922	0.926	0.931	0.936	0.944	0.949	0.954	0.959	0.964
60	0.915	0.920	0.925	0.930	0.935	0.943	0.948	0.953	0.958	0.963
62	0.914	0.919	0.923	0.928	0.933	0.942	0.947	0.952	0.956	0.961
64	0.913	0.918	0.922	0.927	0.932	0.941	0.946	0.951	0.955	0.960
66	0.911	0.916	0.921	0.926	0.931	0.940	0.944	0.949	0.954	0.959
68	0.910	0.915	0.920	0.925	0.929	0.938	0.943	0.948	0.953	0.958
70	0.909	0.914	0.918	0.923	0.928	0.937	0.942	0.947	0.952	0.957
72	0.907	0.912	0.917	0.922	0.926	0.936	0.941	0.946	0.950	0.955
74	0.906	0.911	0.916	0.921	0.925	0.935	0.940	0.945	0.949	0.954
76 70	0.905	0.910	0.914	0.919	0.924	0.934	0.938	0.943	0.948	0.953
78 80	0.904	0.908	0.913	0.918	0.923	0.933	0.937	0.942	0.947	0.952
80 82	0.902	0.907	0.912	0.917	0.921	0.931	0.936	0.941	0.946	0.950
82 84	0.901 0.900	0.905 0.904	0.910 0.909	0.915 0.914	0.920	0.930 0.929	0.935 0.934	0.940	0.944 0.943	0.949 0.948
84 86	0.900	0.904	0.909	0.914	0.919 0.917	0.929	0.934	0.939 0.937	0.943	0.948
88	0.897	0.903	0.906	0.912	0.917	0.926	0.932	0.937	0.942	0.947
90	0.896	0.901	0.907	0.911	0.915	0.927	0.931	0.935	0.941	0.944
92	0.894	0.899	0.903	0.910	0.913	0.923	0.930	0.933	0.940	0.944
94	0.893	0.898	0.904	0.907	0.913	0.924	0.928	0.933	0.937	0.943
96	0.892	0.897	0.901	0.906	0.912	0.923	0.927	0.931	0.936	0.942
98	0.891	0.895	0.900	0.905	0.910	0.921	0.926	0.930	0.935	0.940
100	0.889	0.894	0.898	0.903	0.908	0.919	0.924	0.929	0.934	0.938
100	0.009	0.034	0.030	0.505	0.500	0.010	0.024	0.525	0.004	0.000

WEIGHT PER LITRE OF EMULSIFIED ASPHALT CORRECTED TO STORAGE TEMPERATURE

RELATIVE DENSITY OF EMULSION: 1.000

Temp. EC	kg/R	Temp. EC	kg/R	Temp. EC	kg/R	Temp. EC	kg/R
10 12 14 16 18 20 22 24 26 28	1.003 1.002 1.001 1.000 0.999 0.998 0.997 0.996 0.995 0.994	30 32 34 36 38 40 42 44 46 48	0.994 0.993 0.992 0.991 0.990 0.089 0.988 0.987 0.986 0.985	50 52 54 56 58 60 62 64 66 68	0.985 0.984 0.983 0.982 0.981 0.980 0.979 0.978 0.977	70 72 74 76 78 80 82 84 86 88	0.976 0.975 0.974 0.973 0.972 0.971 0.970 0.969 0.968 0.967

TABLE 4

17. Calculate the Total Weight of Asphalt Available in kg (line "N") as follows:

- 18. At the end of the day:
 - a) Have the contractor measure the distance in metres to the neares 0.05 m from the inside top surface of the tank shell to the surface of the asphalt in the tank. Record as Depth to Asphalt at End of Dya (line "O").
 - b) Obtain the temperature of asphalt in storage at the time fo measurement and record as Ending Temperature of Asphalt in Tank (line "T").

The depth measurement and temperature at the end of one day correspond to the beginning depth measurement and temperature of the next day.

19. Calculate the Depth of Asphalt in mm in the stoppe tank (line "P") as follows:

- 20. If asphalt calibration charts are available, use the charts and the Deptlf o Asphalt Remaining in Tank (line "P") to determine the Ending Volumefo Asphalt in Tank and record it on line "S". Then, leavenles "Q" and "R" blank, and proceed to step 24.
- 21. If asphalt calibration charts are not available, calculate the Percent Dept Filled (line "Q") using the formula:

Percent Depth Filled (%)
$$\frac{Depth\ of\ Asphalt\ Remaining\ in\ Tank}{Total\ Depth\ of\ Tank} \times 100\,\%$$

^{&#}x27; Wt. of Asphalt Delivered % Wt. of Asphalt in Tanks

^{&#}x27; Total Depth of Tank & Depth of Asphalt (from top of tank)

- 22. Use Table 1 and the Percent DepthFilled (line "Q") to determine the Percent of Capacity Filled and record it on line "R".
- 23. Determine the Ending Volume initres of the asphalt in the storage tank (line "S") using the formula:

Vol. (R) • Capacity of Tank
$$\times$$
 Percent of Capacity Filled with Asphalt 100%

- 24. With the Ending Temperature of Asphalt in Tank (line "T") and the Relative Density of Asphalt at 15EC (line "I") use Table 2 or 3 or 4 to determine the Weight per Litre of Asphalt at Tank Temperature and record it on line "U".
- 25. Calculate the Weight of Asphalt in kg inlte storage tank (line "V") as follows:
 - ' Wt./F of Asphalt at Tank Temperature × Ending Volume of Asphalt in Tank
- 26. When two tanks are being used, addhe Ending Weight of Asphalt in Tank 1 (line " V_1 ") to the corresponding EndingWeight of Asphalt in Tank 2 (line " V_2 ") and record as Weight of Asphalt Remaining in Tanks (line "W").
- 27. Calculate the Weight of Asphalt Used during the bulk test (line "X") sa follows:
 - ' Total Wt. of Asphalt Available & Wt. of Asphalt Remaining in Tanks
- 28. Obtain from the Project Manager or office person the total weight in kg o moist mix produced during this intervaland record as Weight of Paid Moist Mix (line "Y").
- 29. Add up all loads of mix that were diverted to other projects or rejected, and record as Weight of Rejected Mix (line "Z").

When calculating the total weight of mix produced during the bulk asphal content test, ensure that you account for all mix produced the asphalt plant during that time period. Include in the total:

- a) the estimated weight of the loads rejected at the plant which did not pass over the weigh scale;
- b) the loads of mix diverted to another pject, e.g., patching. which are typically recorded on separate scale sheets.
- 30. Determine the Total Weight of Moist Mix in kg (line "AA") as follows:

^{&#}x27; Wt. of Paid Moist Mix % Wt. of Rejected or Diverted Mix

- 31. Determine the average moisture content of the plant mix in percent dn record as Average Moisture Content of Mix (line "BB").
- 32. Calculate the Weight of Dry Mix in kg (line "CC") using the formula:

Wt. of Dry Mix (kg)
$$\frac{Total\ Wt.\ of\ Moist\ Mix}{100\ \%\ Mix\ Moisture\ Content\ in\ \%} \times 100\ \%$$

33. Determine the Wt. of Dry Aggregate in kg (line "DD") as follows:

34. Calculate the Bulk Asphalt Content in % (line "EE") using the formula:

Bulk Asphalt Content (%) '
$$\frac{Wt. \ of \ Asphalt \ Used \ (line \ "X")}{Wt. \ of \ Dry \ Aggregate \ (line \ "DD")} \times 100 \%$$

4.0 HINTS AND PRECAUTIONS

- 1. The bulk asphalt content when compared to the day's individual extraction results and/or nuclear asphaltcontent results will give some indication of the fluctuation occurring in the mixproduction. Remedial action should be taken where the difference between the twbecomes excessive, e.g., greater than ±0.3% in asphalt content. Also, a comparison of theulk asphalt content and the average of the day's extractors and/or nuclear asphalt contents will give an indication of the accuracy of each. If individual results consistently differ by more than 0.5% investigate and resolve the differences.
- 2. Since the daily bulk check represents the actual, average asphalt content of the mix produced by the plant, it should correlate within ±0.3% to the plan setting used. The asphalt plant alibration and testing procedures should be checked whenever poor correlation is obtained.
- 3. After the first day of production only one set of tank measurements per day is required as one may use the weight of asphalt remaining in tanks (line "W") of day 1 as the beginning weight of asphalt inanks (line "L") for day 2 and so on.
- 4. Technologists should add days of low production to high production days to increase the accuracy of the bulk asphalt content test. Weekly bulks for all mix produced during a seven day period should be performed, ro arrangements can be made with the office person to calculate a weekly bulk based on his tabulation of the asphalt invoices and scale sheets.
- 5. If during production the asphalt plant runs out of asphalt, a bulk asphal content may be obtained using the total of the asphalt delivery slip invoices to determine the total weight of asphalt used.