Background

Ecosystem components and processes are interconnected and linked across landscapes.

Holistic approaches to understand relationships between land use and environmental quality are needed.

Project Goal: To form the basis of an effective cross-media, coarse filter approach to measure and manage environmental quality.

Multi-scale approach

Primarily focused on research in Western North America.
Project Overview

Summarized and classified findings from published literature identifying:

- Significant relationships between land use patterns and environmental quality
- Potential thresholds of environmental quality associated with distinct land use and land cover patterns

Literature Review:

Scanned: **>650 publications**

Reviewed: **172 publications (30%)**

Biodiversity related studies = 61%

Water quality and quantity studies = 32%
Foundations: Pattern-based Landscape Models

**Patch-Corridor-Matrix Model:**

The patch-matrix-corridor model describes landscapes as mosaics comprised of three principle components: patches, corridors, and a background matrix.

- **Patch:** Patches of habitat can be connected by habitat corridors, forming networks of regional connectivity.
- **Corridor:** The matrix is the dominant, most modified patch type in a landscape.
- **Matrix:** Together these elements comprise a landscape mosaic.

*(Redrawn after Dramstad 1996 by Caitlin Smith, 2012)*
Recognizing Indispensible Landscape Patterns

1) Large patches of natural vegetation
2) Riparian corridors
3) Connective corridors and stepping stones
4) Heterogeneous fragments of natural vegetation in the matrix

“Landscape pattern analysis is based on the premise that there are certain indispensible patterns in any landscape that, if maintained, will conserve the majority of essential landscape processes”
Recognizing Patterns of Landscape Change

Five main ways in which humans alter landscapes spatially:

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perforation</td>
<td>Forest clearcut blocks, well pads</td>
</tr>
<tr>
<td>Dissection</td>
<td>Roads, seismic lines, pipelines</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>Combination of above land uses</td>
</tr>
<tr>
<td>Shrinkage</td>
<td>Agricultural intensification</td>
</tr>
<tr>
<td>Attrition</td>
<td>Fire, timber harvest</td>
</tr>
</tbody>
</table>

The Importance of Spatial Scale

**Grain:** The coarseness in texture or granularity of spatial elements composing a landscape

- Grain is often determined by the size of patches in a landscape
- Different species perceive and respond to landscape differently, at varying spatial scales
- Multi-scale analysis can be performed by the aggregate of watersheds at several spatial scales

**Example:** a coarse grain landscape composed of large, regular patches of harvested forest blocks in a forest reserve west of Sundre, Alberta
Understanding Targets and Thresholds

Ecological thresholds represent a critical value of a stressor, ecosystem property, or landscape attribute at which species’ rate of response to ecosystem change increases drastically.

Conservation targets are parameters of biological health (often biotic indicators) used to assess and plan for a certain standard of environmental quality.

Targets and Thresholds:

1. clear-water lakes
2. phosphorous accumulation in agricultural soil and lake mud
3. flooding, warming, overexploitation of predators
4. turbid-water lakes

Coral-dominated reefs
Overfishing, coastal eutrophication
Disease, bleaching
Algae-dominated reefs

Landscape Pattern Indicators

Significant Findings:

Cover and configuration are related
The relative importance of each fluctuates at certain thresholds of landscape cover

- Flather and Bevers 2002:
  - Percent habitat largely explained population size
  - When percent habitat dropped below 30-50%, habitat configuration was more important than habitat amount

1) Land Cover Indicators

2) Landscape Configuration Indicators

(PHOTO CREDIT: AENV WATERSHED INDICATORS FOR SOUTHERN ALBERTA 2008)
Land Cover Indicators

**Wetland Cover**

(Photo Credit: www.usask.ca)

**Impervious Surface Cover**

(Photo Credit: www.beyond.ca)

**Forest Cover**

(Photo Credit: www.greenpeace.org)

**Agricultural Land Use Cover**

(Photo Credit: Canadian Parliament, www.parl.gc.ca)

**Grassland Cover**

(Photo Credit: www.terraininforma.ca)
Wetland Cover

Significant Findings:

- Proportion (%) of the landscape/watershed in wetlands is a key indicator for water quality, flood control, and biodiversity (Mitsch and Gosselink 2000, Roth et al. 1996)

- Wetlands function differently depending on their position in the landscape downstream (Mitsch and Gosselink 2000)

- Small wetlands are critical components of the surrounding landscape that influence habitat suitability of larger wetlands (Naugle et al. 2001)

- Wetlands were found to work best, in terms of providing ecosystem services, as spatially distributed systems (Mitsch and Gosselink 2000)

<table>
<thead>
<tr>
<th>Taxa or Process</th>
<th>Target wetland cover</th>
<th>Finding</th>
<th>Location</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface water quality</td>
<td>3-7%</td>
<td>Wetlands should comprise at least 3-7% of temperate watersheds for improved water quality Maintain or improve baseline conditions (&gt;7.5%) for a range of watershed values</td>
<td>Midwest USA</td>
<td>Mitsch and Gosselink 2000</td>
</tr>
<tr>
<td>Water quality, biodiversity, etc.</td>
<td>&gt;7.5% of watershed</td>
<td></td>
<td>Red Deer River Basin, Alberta</td>
<td>O2 Planning + Design Inc. et al. 2013</td>
</tr>
</tbody>
</table>
Forest Cover

Significant Findings:


- Water treatment costs decrease with higher percentages (up to 60%) of forest cover in a watershed (US Trust for Public Lands 2004, Freeman et al. 1998)

- Forest fires can cause nutrient and sediment loading in streams, negatively impacting water quality (Stein et al. 2012, Levine et al. n.d, Oliver et al. 2012, Emelko et al. 2012, Bladon 2008)

Targets and Thresholds:

<table>
<thead>
<tr>
<th>Taxa or Process</th>
<th>Forest cover target</th>
<th>Finding</th>
<th>Location</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water quantity</td>
<td>&lt;25%</td>
<td>When &gt;25% of the watershed’s forest cover is clearcut in a short period of time, there is a measurable increase in annual streamflows from the watershed.</td>
<td>Oregon</td>
<td>Adams and Taratoot 2001</td>
</tr>
<tr>
<td>Fish Habitat (bull trout)</td>
<td>&lt;35%</td>
<td>Timber harvest on up to 35% or more of individual subbasins is projected to result in the extirpation of bull trout from up to 43% of stream reaches, especially those that support high densities of bull trout.</td>
<td>Alberta</td>
<td>Ripley et al. 2005</td>
</tr>
</tbody>
</table>
Grassland Cover

Significant Findings:

- Many area sensitive bird and mammal species require high percentages of native grassland cover to meet their basic habitat needs (USDA 1999, Taylor 2004, Downey 2004, Coppedge 2001)

- Natural fire regimes are essential to maintain habitat conditions for certain specialist grassland species (Fitzgerald et al. 1999)

- The amount and proportion of grassland in relation to other cover types can influence predation rates and trophic cascades (Bergin et al. 2000, Crooks and Soule 1999)

Targets and Thresholds:

<table>
<thead>
<tr>
<th>Taxa or Process</th>
<th>Target grassland cover</th>
<th>Finding</th>
<th>Location</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td>&gt;5% tree cover; &gt;20% shrub cover</td>
<td>Grassland bird species are affected when the amount of tree or shrub cover in the landscape exceeds 5% or 20%, respectively</td>
<td>Southern Alberta</td>
<td>O2 Planning + Design Inc. et al. 2008a</td>
</tr>
<tr>
<td>Birds</td>
<td>30-60%</td>
<td>When native grassland cover dropped below 60% at one site, and 30-40% at another site, the arrangement or habitat patches became more important to the survival of populations than habitat amount alone</td>
<td>Oklahoma</td>
<td>Coppedge et al 2001a</td>
</tr>
</tbody>
</table>
Impervious Surface Cover

Significant Findings:

• The amount of impervious surface area in a watershed is significantly negatively correlated with lower water quality and stream health (Booth 2008, Stewart et al. 2001, Arnold and Gibbons 1996)

• As impervious surfaces in the watershed increase, linear increases in aquatic nitrogen pollution are observed (O2 Planning + Design Inc. et al. 2008)

• Watersheds with IS >30% provide very low ecosystem services (Brabec et al. 2002, Arnold et al. 1996)

Targets and Thresholds:

<table>
<thead>
<tr>
<th>Process</th>
<th>Target impervious cover</th>
<th>Finding</th>
<th>Location</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water quality</td>
<td>&lt;10% of watershed</td>
<td>Impervious areas should be kept at or below 10% of a watershed in order to effectively mitigate the impacts of urbanization and development on watersheds.</td>
<td>Washington</td>
<td>Booth 2000</td>
</tr>
<tr>
<td>Water quality</td>
<td>&lt;25%</td>
<td>Impervious cover should be maintained at or below 25% in heavily urbanizing watersheds</td>
<td>Multiple</td>
<td>Leitao et al. 2006; Brabec et al. 2002; Arnold et al. 1996</td>
</tr>
</tbody>
</table>
Agricultural and Other Land Use Cover

Significant Findings:

• Biotic integrity is negatively correlated with the extent and proportion of agricultural land cover (Roth et al. 1996, Moyle and Randall 1998, Haug and Oliphant 1990)

• Rates of pollination by native bees increase with the amount and proximity of nearby natural habitat (Kremen 2002, Morandin 2007)

• The amount, distribution, and intensity of agricultural land use correlates negatively with water quality and stream health (Lorenz et al. 2008, Houlahan and Findlay 2004, Freeman et al. 2008)

• Upstream land uses are the primary determinant of downstream water quality (Roth et al. 1996)

Targets and Thresholds:

<table>
<thead>
<tr>
<th>Taxa or Process</th>
<th>Target cover/other measure</th>
<th>Finding</th>
<th>Location</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollination</td>
<td>&gt;30% uncultivated</td>
<td>Yield and profit could be maximized with 30% of land uncultivated within 750 m of field edges.</td>
<td>Northern Alberta</td>
<td>Morandin 2006</td>
</tr>
<tr>
<td>Birds</td>
<td>&lt;50% upland landscape in tilled agriculture</td>
<td>Numerous wetland bird species were more likely to inhabit wetlands in landscapes where &lt;50% of the upland matrix was tilled.</td>
<td>South Dakota</td>
<td>Naugle et al. 2001</td>
</tr>
</tbody>
</table>
Landscape Configuration Indicators

Configuration = the diversity in pattern, spatial arrangement, and types of land uses and vegetation communities in a landscape.

(Redrawn after Dramstad1996 by Caitlin Smith, 2012)
**Fragmentation and Connectivity**

**Fragmentation:** the degree to which vegetation communities are broken apart into smaller isolated sections within a landscape. Often works in tandem with habitat loss.

**Connectivity:** a contiguity condition in which patch elements flow uninterrupted across a landscape.

1) Landscape with high patch connectivity
2) Landscape fragmented by road; reducing connectivity
Fragmentation and Connectivity

**Significant Findings:**

- Landscape fragmentation results in demographic changes in plant and animal populations, as well as the possible risk of extinction (Jules 1998, Hargis et al. 1999, Connelly et al. 2004, Stewart et al. 2001)

- Small streams, and the water quality provisioning ecosystem services they provide, are most vulnerable to fragmentation via diversion, channelization, and elimination in fragmented urban and agricultural environments (Peterson 2001)

**Targets and Thresholds:**

<table>
<thead>
<tr>
<th>Taxa or Process</th>
<th>Connectivity index</th>
<th>Findings</th>
<th>Location</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td>Movement confined within 75m of forest edge</td>
<td>Chickadee flocks moved parallel to forest boundaries within up to 75m of forest edge</td>
<td>Northern Alberta</td>
<td>Desrochers and Fortin 2000</td>
</tr>
<tr>
<td>Birds</td>
<td>&lt;50 m gaps</td>
<td>Forest dwelling birds are reluctant to cross gaps in forest cover greater than 50 meters.</td>
<td>Quebec</td>
<td>Desrochers and Hannon 1997</td>
</tr>
<tr>
<td>Mammals</td>
<td>&lt;100m gaps; &lt;25% open</td>
<td>Forested landscapes were unsuitable for martens when the average nearest-neighbor distance between open, non-forested patches was &lt;100m. Timber harvests and natural openings should not constitute more than 25% of a landscape greater than 9km² to ensure marten population persistence.</td>
<td>Northern Utah</td>
<td>Hargis et al. 1999</td>
</tr>
</tbody>
</table>
Corridor Systems

- Riparian Corridors
- Shelterbelts
- Linear disturbances

(Photo credit: AeNV Watershed Indicators for Southern Alberta 2008)

(Riparian Corridor: Photo Credit: www.epa.gov)

(SHELTER BELTS: Photo Credit: www.aftaweb.org)

Roads (Photo Credit: AENV Watershed Indicators for Southern Alberta 2008)
Riparian Corridors/Stream Buffers

Significant Findings:

- Buffers less than 5-10m provide little protection of aquatic resources under most conditions (Castelle and Connolly 1994)


- Riparian buffers play an important role in managing nitrogen uptake in watersheds (Mayer et al. 2007)

Targets and Thresholds:

<table>
<thead>
<tr>
<th>Taxa or Process</th>
<th>Target buffer width</th>
<th>Findings</th>
<th>Location</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish habitat/ aquatic health</td>
<td>30m</td>
<td>High percentages of forest cover within a 30m riparian buffer were related to healthy fish communities and water quality. Fish density increased with increase in the average length of riparian vegetation without gaps (&gt;30m).</td>
<td>Wisconsin</td>
<td>Stewart et al. 2001</td>
</tr>
<tr>
<td>Water quality</td>
<td>&gt;50m</td>
<td>Wide buffers (&gt;50 m) more consistently removed significant portions of nitrogen entering a riparian zone than narrow buffers (0-25 m).</td>
<td>World-wide (literature review)</td>
<td>Mayer et al. 2007</td>
</tr>
</tbody>
</table>
Shelter Belts

Significant Findings:

• Shelterbelts can be effective in controlling erosion and filtering odors at both the farm and landscape scale as a means of safeguarding regional air (Brandle et al. 2004, Leuty 2004, Tyndall and Colletti 2007)

• For erosion control, the area completely protected by windbreaks is assumed to be a distance 10 times the height of the barrier downwind from the barrier along the prevailing wind direction (Ticknor et al. 1988)

• Shelterbelts of 6-10 meters high serve as an adequate buffer to reduce odors from nearby animal operations (Tyndall and Colletti 2007).

Targets and Thresholds:

<table>
<thead>
<tr>
<th>Taxa or Process</th>
<th>Shelter belt dimension</th>
<th>Findings</th>
<th>Location</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air quality</td>
<td>6-10m high</td>
<td>Shelterbelts of 6-10 meters high serve as an adequate buffer to reduce odors from nearby animal operations</td>
<td>North America</td>
<td>Tyndall and Colletti 2007</td>
</tr>
<tr>
<td>Erosion protection</td>
<td>Area protected = distance 10 times the height of trees</td>
<td>Erosion protection is thought to extend to a distance 10 times the height of the tree species used as a windbreak</td>
<td>North America</td>
<td>Ticknor 1988</td>
</tr>
<tr>
<td>Erosion protection</td>
<td>Single row</td>
<td>Single row plantings are common and are as effective and use less land than multiple row plantings.</td>
<td>North America</td>
<td>Tibke 1988</td>
</tr>
</tbody>
</table>
Linear Disturbances

Significant Findings:

• In general, most mammals, fish, and birds are significantly negatively affected by increasing road density in a given landscape (Clevenger et al. 2003, Rowland et al. 2000, AESRD 2012, Kissner 2004, Lorenz et al. 2008)

• Bird abundance and breeding success tends to decrease with increasing noise associated with road and energy development disturbances (Bayne et al. 2005, Habib et al. 2007, Kaseloo 2005)

• Birds are more vulnerable to roadkill than mammals on divided highways with forested medians due to their willingness to cross narrow gaps (Clevenger et al. 2003)
Linear Disturbances

Significant Findings:

• Roads can serve as vectors for the spread of invasive plant species, especially up to 1000m from the road (Gelbard and Belnap 2003)

• Roads can affect male and female members of a species differentially, having cascading implications for the survival of populations when females of a species are disproportionately impacted (Proctor et al. 2012, Leblond et al. 2007)

• Road construction can increase turbidity and suspended sediment loads in nearby streams (Fowler et al. 1988)

(photo credit: flickr.com)
## Linear Disturbances

### Targets and Thresholds for Road Density:

<table>
<thead>
<tr>
<th>Taxa or Process</th>
<th>Target density</th>
<th>Findings</th>
<th>Location</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elk</td>
<td>1.5 km/km²</td>
<td>Road density threshold at which elk could still occur in high numbers: 1.5 km/km²</td>
<td>Oregon</td>
<td>Rowland et al. 2000</td>
</tr>
<tr>
<td>Elk</td>
<td>0.62 km/km²</td>
<td>Road density threshold for elk in Alberta: 0.62 km/km²</td>
<td>Alberta</td>
<td>AESRD 2012</td>
</tr>
<tr>
<td>Snakes (Prairie rattlesnake)</td>
<td>1.6km per 1/4 section</td>
<td>Road densities greater than 1.6 km per 1/4 section are unsuitable for prairie rattlesnakes</td>
<td>Alberta</td>
<td>Kissner 2004</td>
</tr>
<tr>
<td>Grizzly bears</td>
<td>0.4 km/km²</td>
<td>Road density threshold for grizzly bears in Alberta: 0.4 km/km²</td>
<td>Alberta</td>
<td>AESRD 2012</td>
</tr>
</tbody>
</table>

### Targets and Thresholds for Road Avoidance:

<table>
<thead>
<tr>
<th>Taxa or Process</th>
<th>Buffer width</th>
<th>Findings</th>
<th>Location</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td>1,500 m for &gt;10,000 vehicles/day; 2,800 m for &gt;60,000 vehicles/day</td>
<td>In a study of grassland birds (bobolinks and meadowlarks), effect distances ranged from 50-1,500 m at 10,000 vehicles/day and increased to 70-2,800 m at 60,000 vehicles/day. Similar effect distances were found for woodland species.</td>
<td>Netherlands; Boston USA</td>
<td>Kaseloo 2005</td>
</tr>
<tr>
<td>Species dwelling near roads</td>
<td>1,000m</td>
<td>Species occupancy near roads is severely affected at a threshold traffic volume of 30,000 vehicles per day. Avoidance zones extend up to 1000 m from the road. Roads with 50,000 vehicles per day can result in an average effect-distance of 800 m for woodland species and more than 900 m for grassland species.</td>
<td>Multiple (literature review)</td>
<td>Kociolk and Clevenger 2011</td>
</tr>
</tbody>
</table>
Patch Size

Significant Findings:

- Ideal patch size varies depending on the taxonomic group and associated dispersal patterns in question (Bender et al. 1998, McGarigal and Cushman 2002, Herkert 1994, Soule 1991)

- In general, species with smaller dispersal ranges, such as plants and invertebrates, require smaller patches of <10 ha (McGarigal and Cushman 2002)

- Large vertebrates, wide-ranging predators, and area-sensitive birds require larger patches of >2,500 ha (Trine 1998, Mattson 1990, and Beier 1993)

Targets and Thresholds:

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Target Patch Size</th>
<th>Finding</th>
<th>Location</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td>5-55ha</td>
<td>Area-sensitive bird species required patches of suitable habitat at least 5-55 ha in size, and regularly avoided smaller grassland fragments even when they were composed of suitable habitat</td>
<td>Illinois</td>
<td>Herkert 1994</td>
</tr>
<tr>
<td>Birds</td>
<td>50 ha</td>
<td>Minimum habitat requirements for birds ranges from 1 to 2,500 hectares, however most studies cited area requirements under 50 hectares (Kennedy et al. 2003).</td>
<td>USA</td>
<td>Kennedy et al. 2003</td>
</tr>
<tr>
<td>Birds</td>
<td>&gt;6.5 ha, 15.4-32.6 ha</td>
<td>Black tern required 6.5 ha in heterogeneous landscapes, but required 15.4-32.6 ha in homogenous landscapes</td>
<td>South Dakota</td>
<td>Naugle et al. 1999</td>
</tr>
</tbody>
</table>
Core Area and Edge

Significant Findings:

- Species diversity is generally higher in patches with greater percentages of interior core area (Knutson et al. 1999, Kennedy et al. 2003).

- Larger core areas have less interaction with the surrounding matrix, resulting in reduced probability of exotic species invasion (Gelbard and Belnap 2003).

- The shape of edges facilitate different movement patterns among mammals and birds, either directing movement parallel to hard edges of promoting passage through softer curvilinear edges (Dramstad et al. 1996, Desrochers and Fortin 2000).

- Predation rates may be greater at habitat edges (Soule 1991, Patten et al. 2006).
### Core Area and Edge

#### Targets and Thresholds:

<table>
<thead>
<tr>
<th>Taxa or Process</th>
<th>Target Edge Length</th>
<th>Finding</th>
<th>Location</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water quality</td>
<td>2250m for N and P; 4000m for sediment P</td>
<td>Water nitrogen and phosphorous levels were negatively correlated with forest cover at 2250 meters from the wetland edge. Sediment phosphorous levels were negatively correlated with wetland size and forest cover at 4000 meters from the wetland edge, and positively correlated with the proportion of land within 4000 meters of the wetland.</td>
<td>Ontario</td>
<td>Houllahan and Findley 2004</td>
</tr>
<tr>
<td>Amphibian species richness</td>
<td>2000m</td>
<td>Species richness increases with the percentage of forest within 2000m of a wetland</td>
<td>Iowa and Wisconsin</td>
<td>Knutson et al. 1999</td>
</tr>
<tr>
<td>Flora</td>
<td>65m</td>
<td>Trillium populations in forest remnants within 65m of forest clear-cut edges have almost no recruitment of young plants</td>
<td>Oregon</td>
<td>Jules 1998</td>
</tr>
</tbody>
</table>
Landscape Heterogeneity

Significant Findings:

• Landscape heterogeneity decreases the abundance of rare interior species, increases the abundance of edge species and animals requiring two or more landscape elements, and enhances potential species coexistence (Kennedy et al. 2003)

• The flows of energy and biomass across boundaries separating the patches, corridors and matrix of a landscape increase with increasing landscape heterogeneity (Kennedy et al. 2003)

• The flows of energy and biomass across boundaries separating the patches, corridors and matrix of a landscape increase with increasing landscape heterogeneity (Kennedy et al. 2003)

• When undisturbed, horizontal landscape structure tends progressively toward homogeneity; moderate disturbance rapidly increases heterogeneity, and severe disturbance may increase or decrease heterogeneity (Kennedy et al. 2003)
Conclusions

“There are certain indispensable patterns in the landscape that, if protected, will conserve the majority of important ecological functions” (Forman 1995).

- **Cover and configuration are related.** The relative importance fluctuates at certain thresholds of landscape cover.

- **Proportion of native land cover in a landscape is a good indicator of environmental quality, species diversity, riparian and watershed health.**

- **Proportion of impervious surface and agricultural land cover are inverse indicators of environmental quality, species diversity, riparian and watershed health.**

- **Large patches of forest or other natural vegetation provide ecological services that cannot be duplicated by other elements.**

- **Linear corridors of vegetation can provide habitat connectivity and erosion control in an otherwise fragmented landscape.**