Some information in this document may be subject to change due to COVID-19. See the Alberta Education website for updates.
This document was written primarily for:

<table>
<thead>
<tr>
<th>Category</th>
<th>Yes No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td>✔</td>
</tr>
<tr>
<td>Teachers</td>
<td>✔</td>
</tr>
<tr>
<td>Administrators</td>
<td>✔</td>
</tr>
<tr>
<td>Parents</td>
<td></td>
</tr>
<tr>
<td>General Audience</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
</tbody>
</table>

Alberta Education, Government of Alberta

2020–2021

Chemistry 30 Information Bulletin

Distribution: This document is posted on the Alberta Education website.

Copyright 2020, the Crown in Right of Alberta, as represented by the Minister of Education, Alberta Education, Provincial Assessment Sector, 44 Capital Boulevard, 10044 108 Street NW, Edmonton, Alberta T5J 5E6, and its licensors. All rights reserved.

Special permission is granted to Alberta educators only to reproduce, for educational purposes and on a non-profit basis, parts of this document that do not contain excerpted material.

Excerpted material in this document shall not be reproduced without the written permission of the original publisher (see credits, where applicable).
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Examination Security</td>
<td>2</td>
</tr>
<tr>
<td>Time Limits on Diploma Examinations</td>
<td>2</td>
</tr>
<tr>
<td>Maintaining Consistent Standards over Time on Diploma Examinations</td>
<td>3</td>
</tr>
<tr>
<td>Diploma Examinations: Multiple Forms</td>
<td>4</td>
</tr>
<tr>
<td>Field Testing</td>
<td>5</td>
</tr>
<tr>
<td>How do field tests help teachers and students?</td>
<td>5</td>
</tr>
<tr>
<td>How are field-test data used?</td>
<td>5</td>
</tr>
<tr>
<td>Science field tests</td>
<td>5</td>
</tr>
<tr>
<td>How can teachers request field tests?</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 30 Field Testing</td>
<td>7</td>
</tr>
<tr>
<td>Practice Tests</td>
<td>8</td>
</tr>
<tr>
<td>Special-format Practice Tests</td>
<td>8</td>
</tr>
<tr>
<td>Audio Descriptions</td>
<td>8</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>9</td>
</tr>
<tr>
<td>Cognitive Expectations</td>
<td>10</td>
</tr>
<tr>
<td>Performance Expectations</td>
<td>11</td>
</tr>
<tr>
<td>Curriculum standards</td>
<td>11</td>
</tr>
<tr>
<td>Acceptable standard</td>
<td>11</td>
</tr>
<tr>
<td>Examples of acceptable-standard questions</td>
<td>12</td>
</tr>
<tr>
<td>Standard of excellence</td>
<td>14</td>
</tr>
<tr>
<td>Examples of standard of excellence questions</td>
<td>15</td>
</tr>
<tr>
<td>Examination Specifications and Design</td>
<td>17</td>
</tr>
<tr>
<td>Diploma Examination Instructions Pages</td>
<td>20</td>
</tr>
<tr>
<td>*NEW Machine-scored Questions</td>
<td>24</td>
</tr>
<tr>
<td>Examples of numerical-response questions</td>
<td>25</td>
</tr>
<tr>
<td>Calculation question</td>
<td>25</td>
</tr>
<tr>
<td>Sequencing question</td>
<td>26</td>
</tr>
<tr>
<td>Selection question (I)</td>
<td>27</td>
</tr>
<tr>
<td>Selection question (II)</td>
<td>28</td>
</tr>
<tr>
<td>Scientific-notation question</td>
<td>29</td>
</tr>
<tr>
<td>Multiple-answer matching question</td>
<td>30</td>
</tr>
<tr>
<td>Assessment of Skills and STS Outcomes</td>
<td>32</td>
</tr>
<tr>
<td>*NEW Trends in Student Performance</td>
<td>33</td>
</tr>
<tr>
<td>Clarifications</td>
<td>34</td>
</tr>
<tr>
<td>Unit A</td>
<td>35</td>
</tr>
<tr>
<td>Unit B</td>
<td>37</td>
</tr>
<tr>
<td>Unit C</td>
<td>40</td>
</tr>
<tr>
<td>Unit D</td>
<td>43</td>
</tr>
</tbody>
</table>

*NEW indicates new content added for the current academic year.
Please note that if you cannot access one of the direct website links referred to in this document, you can find diploma examination-related materials on the Alberta Education website.
Introduction

The purpose of this bulletin is to provide teachers of Chemistry 30 with information about the diploma examinations scheduled in the 2020-2021 school year. This bulletin should be used in conjunction with the current Chemistry 30 Program of Studies.

This bulletin includes descriptions of the Chemistry 30 Diploma Examinations that will be administered in November of 2020 and in January, April, June, and August of 2021; descriptions of the acceptable standard and the standard of excellence; and subject-specific information. The mark awarded to a student on the Chemistry 30 Diploma Examinations in the 2020-2021 school year will account for 30% of the student’s final blended mark, and the school-awarded mark will account for the remaining 70%.

Teachers are encouraged to share the contents of this bulletin with students.
Examination Security

All diploma examinations will be held secure until they are released to the public by the Minister. No secure diploma examination is to be previewed until it is released to the public by the Minister. No secure diploma examination is to be previewed, discussed, copied, or removed from the room in which the examination is being written.

**The perusal of diploma examinations is not permitted for any exam administration in 2021.** Perusal copies will not be provided for the January 2021 or June 2021 administrations.

For mathematics and science diploma exams: All diploma examination booklets **must be kept secure, without exception.**

For humanities diploma exams: All diploma examination booklets, including humanities Part A: Written Response, **must be kept secure, without exception.**

All diploma exam booklets, including unused copies of all diploma exams, must be returned to Alberta Education as per the dates indicated in the [Schedule of Significant Dates](#).

For more information about examination security, please refer to the [General Information Bulletin](#).

Time Limits on Diploma Examinations

All students may use extra time to write diploma examinations. This means that all students have up to 6 hours to complete the *Chemistry 30 Diploma Examination*, if they need it. **The examination is nevertheless designed so that the majority of students can complete it within 3 hours.** The examination instructions state both the designed time and the total time available.

Extra time is available for diploma examinations in all subjects, but the total time allowed is not the same in all subjects. For more information about accommodations and provisions for students, please refer to the [General Information Bulletin](#).
Maintaining Consistent Standards over Time on Diploma Examinations

A goal of Alberta Education is to make scores achieved on examinations within the same subject directly comparable from session to session, to ensure fairness to students across administrations.

To achieve this goal, the examination has a number of questions in common with a previous examination. Common items are used to find out if the student population writing in one administration differs in achievement from the student population writing in another administration. Common items are also used to find out if the unique items (questions that have never appeared in a previous examination) differ in difficulty from the unique items on the baseline examination that sets the standard to which all students are held.

A statistical process called equating adjusts for differences in difficulty between examinations. Examination marks may be adjusted depending upon the difficulty of the examination written relative to the baseline examination. Therefore, the resulting equated examination scores have the same meaning regardless of when and to whom the examination was administered. Equated diploma examination marks are reported to students. More information about equating is available here.

Because of the security required to ensure fair and appropriate assessment of student achievement over time, Chemistry 30 Diploma Examinations will be fully secured and will not be released at the time of writing.
Diploma Examinations: Multiple Forms

As part of Alberta Education’s commitment to fairness to students and flexibility in the writing of diploma examinations, there may be two distinct forms (versions) of diploma examinations in some subjects during major administrations (January and June). The two forms are equated to baseline examinations to ensure that the same standard applies to both forms. Both forms adhere to the established blueprint specifications and are reviewed by a technical review committee.

To facilitate the analysis of school-level results, each school receives only one examination form per subject. In subjects offering a translated French-language examination, both forms are administered in English and in French.

For more information, contact

Deanna Shostak
Director, Diploma Programs
780-422-5160 or Deanna.Shostak@gov.ab.ca

or

Pascal Couture
Director, Exam Administration
780-643-9157 or Pascal.Couture@gov.ab.ca
Field Testing

Field testing is an essential stage in the development of fair, valid, and reliable provincial examinations. Field testing is a process of collecting data on questions before they become part of a diploma examination. Potential diploma examination questions are administered to students in diploma courses throughout the province to determine the difficulty level and appropriateness of the questions. Each field test requires a large student sample to provide the examination developers with reliable information (statistical data and written validation comments from teachers and students).

How do field tests help teachers and students?

Teachers receive each student’s score promptly, gaining useful information about their students’ performance. Students benefit from writing a test that duplicates some of the experience of writing a diploma examination. Field tests provide students and teachers with examples of the format and content of questions that may appear on diploma examinations. Finally, because of field testing, students, teachers, and parents can be reassured that the questions on diploma examinations have undergone a rigorous process of development, improvement, and validation.

How are field-test data used?

The data received from field tests indicate the validity, reliability, and fairness of each question. Questions that meet specific standards are selected for use on future diploma examinations.

Some questions or sets of questions may not initially perform as well as we require. These questions may be revised and field tested again. Revisions are influenced by the written comments of students and teachers, who provide valuable advice about the appropriateness of the questions, adequacy of writing-time limits, test length, text readability, artwork/graphics clarity and suitability, and question difficulty.

Science field tests

All Grade 12 science field tests are offered exclusively through the Quest A+ online delivery system. These include purely digital field tests; and hybrid field tests, in which students receive a paper copy of the test but must respond to the questions online.

Students should use paper data booklets or data pages for all science field tests. These resources will also appear in the online delivery system. Students should also have scrap paper, which may be accessed and downloaded from the “Teacher Resources” section on the homepage of the Field Test Request System. All paper data sheets or scrap paper with markings must be securely shredded at the end of the field-test administration.

Teachers have a 24-hour period to peruse digital or hybrid field tests and are provided with data on how their students performed. These data include the proportion of students who chose each alternative for multiple-choice items and the proportion who left a numerical-response item blank. Test items are blueprinted to program of studies outcomes, which allows teachers to use field-test results to learn more about their students’ strengths and weaknesses.
Once logged into the digital or hybrid field test on the online delivery system, teachers have the same length of time to peruse the test as their students did to write it. Teachers might choose to log into the field test, submit the confidentiality form, and then log out of the test, so that they can finish perusing the test after receiving their students’ data.

It is important to note that the security of field-test items remains vital to the administration of diploma examinations. Participating teachers must commit to maintaining the security of field-test items. In the case of hybrid field tests, paper copies are mailed to schools and must be kept secure by the school principal until administration. After the administration of a hybrid field test, all paper copies must be mailed back to Alberta Education.

More information about field-test registration deadlines, administration, and security is available here.

**How can teachers request field tests?**

Teachers requesting field tests must have a Public Authentication System (PAS) account. All requests are made through the Field Test Request System. Further information, including the closing dates to request and administer a field test, may be obtained here, or by contacting Field.Test@gov.ab.ca. Practice tests are available online.

**For more information, contact**

Deanna Shostak  
Director, Diploma Programs  
780-422-5160 or Deanna.Shostak@gov.ab.ca

or

Pascal Couture  
Director, Exam Administration  
780-643-9157 or Pascal.Couture@gov.ab.ca
Chemistry 30 Field Testing

The Chemistry program is thankful to the many teachers and students who have volunteered for field test placements. The table below shows the format, number of questions, and length of time for field tests available for the 2020–2021 school year. Teachers may wish to consider this table when requesting a field test placement.

<table>
<thead>
<tr>
<th>Type of Field Test</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Questions (MC and NR)</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Test Time (min)</td>
<td>65*</td>
<td>65*</td>
</tr>
</tbody>
</table>

*The field tests are designed to be completed in 65 minutes; however, an additional 15 minutes may be used if available. These new time instructions appear on the field test instructions pages.

For more information on requesting field tests, please refer to Field Testing Program Rules, Procedures and Request Guide.
Practice Tests

To give students an opportunity to practise diploma examination-style questions and content, Alberta Education produces practice tests for most subjects that have a diploma examination. Students can access these practice tests using Alberta Education’s online test delivery system.

Special-format Practice Tests

To give students an opportunity to practise diploma examination-style questions and content in Braille, audio, large print, or coloured print versions, Alberta Education produces special-format practice tests for all subjects that have a diploma examination. Alberta schools with registered Alberta K–12 students may place orders for these tests. Braille versions are available in English and, by request, in French. All tests are provided free of charge, but limits may be placed on order volumes to ensure access for all students.

For the greatest benefit, special-format practice tests should be written under conditions similar to those of the corresponding diploma examination. The same rules regarding the use of resources and devices should be followed.

Braille versions must be returned to Alberta Education after use.

For more information or to place an order, contact

Laura LaFramboise
Distribution Coordinator, Examination Administration
780-492-1644
Laura.LaFramboise@gov.ab.ca

Audio Descriptions

Examples of Descriptions Used in Audio Versions of Science Diploma Exams has been developed to assist teachers and students planning to use an audio version during the administration of a diploma examination.
Course Objectives

Chemistry 30 is intended to develop students’ understanding of the interconnecting ideas and chemistry principles that transcend and unify the natural-science disciplines and of their relationship to the technology that students use in their daily lives. It is of utmost importance to remember that Chemistry 30 is an experimental discipline that develops the knowledge, skills, and attitudes to help students become capable of and committed to setting career and/or life goals, make informed choices, and act in ways that will improve the level of scientific awareness essential for a scientifically literate society. Laboratory experience is an essential component of the Chemistry 30 course.

Students of Chemistry 30 are expected to develop an aptitude for collecting data, observing, analyzing, forming generalizations, hypothesizing, and making inferences from observations. The course is designed to promote students’ understanding of chemistry concepts, and their ability both to apply these concepts to relevant situations and to communicate in the specialized language of chemistry.

Success in Chemistry 30 requires the successful completion of Science 10, Chemistry 20, and concurrent mathematics courses that develop the requisite knowledge and skills.
Cognitive Expectations

Outcomes in the Chemistry 30 Program of Studies contain verbs that indicate the cognitive expectation of the outcome. Verbs classified under remembering and understanding (RU) are coded yellow in the chart below; verbs classified under applying are coded green; verbs classified as higher mental actives (HMA) are coded blue; and those related to skills are coded pink.

The following graphic shows the same information arranged in a hierarchy, which is the arrangement used in the revised Bloom’s taxonomy.

The verbs arranged in the graphic shown above are only those that have been used in the Chemistry 30 Program of Studies. It is important to remember that the graphic should serve only as a guideline and that the verbs are not permanently fixed in the categories shown. A verb can indicate a variety of cognitive levels depending on the context in which it is used, and the two taken together are what determines the cognitive expectation.

Note that difficulty is independent of cognitive level. Outcomes at any of the three cognitive levels can be assessed at either the acceptable standard or the standard of excellence.
Performance Expectations

Curriculum standards

Provincial curriculum standards help to communicate how well students need to perform to be judged as having achieved the objectives specified in the Chemistry 20–30 Program of Studies, 2007 (Updated 2014). The specific statements of standards are written primarily to inform Chemistry 30 teachers about the extent to which students must know the Chemistry 30 content and demonstrate the required skills to pass the examination.

Acceptable standard

Students who meet the acceptable standard in Chemistry 30 will receive a final course mark of 50% or higher. These students demonstrate a basic understanding of the nature of scientific investigation by designing, observing, performing, and interpreting simple laboratory tests. They can readily interpret data that are presented in simple graphs, tables, and diagrams, and can translate symbolic representations into word descriptions. They are able to recognize and provide definitions for key chemical terms, and can predict the physical and chemical properties of compounds. They are able to balance simple equations (combustion, formation, neutralization, or oxidation–reduction) and can solve standard, single-step, stoichiometric problems. Following laboratory procedures does not present a problem for these students, nor does using the data booklet to extract relevant information. These students compose clear and logical descriptive or explanatory statements to answer closed-response questions that involve individual chemistry concepts.
Examples of acceptable-standard questions

*Use the following information to answer question 1.*

Dr. Richard Trotter has developed what could be the first cost-effective process for limiting methane emissions from underground coal mines. In this process, methane and oxygen are reacted at 800 °C in the presence of a catalyst. The products of this process are carbon dioxide gas and water vapour.

1. Which of the following enthalpy diagrams represents both the catalyzed (---) and uncatalyzed reactions (—) for this process?

   A. (Diagram A)
   
   B. (Diagram B)
   
   C. (Diagram C)
   
   D. (Diagram D)

Answer: A
Use the following information to answer question 2.

To determine the concentration of a Sn\(^{2+}\)(aq) solution, a student titrated a 50.00 mL sample of acidified Sn\(^{2+}\)(aq) with 1.44 mmol/L KMnO\(_4\)(aq). The titration required 24.83 mL of KMnO\(_4\)(aq) in order to reach a pale pink endpoint.

2. The balanced net ionic equation for this titration reaction is

   A. \(2 \text{MnO}_4^-\)(aq) + 16 H\(^+\)(aq) + 5 Sn\(^{2+}\)(aq) \rightarrow 2 \text{Mn}^{2+}(aq) + 8 \text{H}_2\text{O}(l) + 5 \text{Sn}^{4+}(aq)\)
   
   B. \(2 \text{MnO}_4^-\)(aq) + 16 H\(^+\)(aq) + 5 Sn\(^{2+}\)(aq) \rightarrow 2 \text{Mn}^{2+}(aq) + 8 \text{H}_2\text{O}(l) + 5 \text{Sn}(s)\)
   
   C. \(\text{MnO}_4^-\)(aq) + 8 H\(^+\)(aq) + Sn\(^{2+}\)(aq) \rightarrow \text{Mn}^{2+}(aq) + 4 \text{H}_2\text{O}(l) + \text{Sn}^{4+}(aq)\)
   
   D. \(\text{MnO}_4^-\)(aq) + 8 H\(^+\)(aq) + Sn\(^{2+}\)(aq) \rightarrow \text{Mn}^{2+}(aq) + 4 \text{H}_2\text{O}(l) + \text{Sn}(s)\)

Answer: A
Standard of excellence

Students who achieve the standard of excellence in Chemistry 30 will receive a final course mark of 80% or higher. In addition to meeting the expectations for the acceptable standard of performance, these students demonstrate an interest in chemistry and can articulate chemistry concepts well. They can readily interpret interrelated sets of data such as complex graphs, tables, and diagrams. When presenting scientific data, they select the most appropriate and concise format. These students can analyze and evaluate experimental designs. They generate their own laboratory procedures when given a clearly defined problem, recognize weaknesses in laboratory work, and find ways to correct the weaknesses. They are able to formulate their own equations for formation, combustion, neutralization, redox, and equilibrium reaction expressions, and can solve many variations of stoichiometric problems based upon these equations. They transfer what they observe in a laboratory setting into equation form and express scientific ideas clearly. They solve problems that involve the overlapping of two or more concepts. The most significant characteristic of this group is that they solve problems of a new and unique nature, and extrapolate these solutions to higher levels of understanding. Open-ended questions do not pose problems for them. These students communicate clearly and concisely, using appropriate scientific vocabulary and conventions.
Examples of standard of excellence questions

Use the following information to answer numerical-response question 1.

<table>
<thead>
<tr>
<th>Four Reaction Equations</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>In(s) + La^{3+}(aq) → no reaction</td>
<td>1 In(s) 5 In^{3+}(aq)</td>
</tr>
<tr>
<td>Np(s) + La^{3+}(aq) → Np^{3+}(aq) + La(s)</td>
<td>2 Np(s) 6 Np^{3+}(aq)</td>
</tr>
<tr>
<td>Np(s) + Nd^{3+}(aq) → Np^{3+}(aq) + Nd(s)</td>
<td>3 Nd(s) 7 Nd^{3+}(aq)</td>
</tr>
<tr>
<td>La(s) + Nd^{3+}(aq) → no reaction</td>
<td>4 La(s) 8 La^{3+}(aq)</td>
</tr>
</tbody>
</table>

**Numerical Response**

1. Arranged in order from **strongest** to **weakest**, the oxidizing agents above are numbered

   ________, ________, ________, and ________.

   **Strongest**, ________, ________, and **Weakest**.

   (Record all four digits of your answer in the numerical-response section on the answer sheet.)

**Answer:** 5876
Examples of standard of excellence questions

Use the following information to answer question 3.

\[
\text{CO}_2(g) + \text{H}_2(g) \rightleftharpoons \text{CO}(g) + \text{H}_2\text{O}(g) \quad K_c = 0.137
\]

3. *If the temperature of the system at equilibrium is increased, the concentration of carbon dioxide, CO}_2(g), will \underline{i}, and the value of K}_c will \underline{ii}.*

The statement above is completed by the information in row

<table>
<thead>
<tr>
<th>Row</th>
<th>(i)</th>
<th>(ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>decrease</td>
<td>stay the same</td>
</tr>
<tr>
<td>B.</td>
<td>decrease</td>
<td>increase</td>
</tr>
<tr>
<td>C.</td>
<td>increase</td>
<td>stay the same</td>
</tr>
<tr>
<td>D.</td>
<td>increase</td>
<td>decrease</td>
</tr>
</tbody>
</table>

Answer: B

For more details on the relationship between the program of studies and the performance standards, see the *Chemistry 30 Student-based Performance Standards*, available on the Alberta Education website.
Examination Specifications and Design

Each Chemistry 30 Diploma Examination is designed to reflect the core content outlined in the Chemistry 30 Program of Studies, 2007 (Updated 2014).

<table>
<thead>
<tr>
<th>General Outcome (GOs)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit A (GO 1 and 2)</td>
<td>Thermochemical Changes</td>
</tr>
<tr>
<td>Unit B (GO 1 and 2)</td>
<td>Electrochemical Changes</td>
</tr>
<tr>
<td>Unit C (GO 1 and 2)</td>
<td>Chemical Changes of Organic Compounds</td>
</tr>
<tr>
<td>Unit D (GO 1 and 2)</td>
<td>Chemical Equilibrium Focusing on Acid–Base Systems</td>
</tr>
<tr>
<td>Scientific Process and Communication Skills</td>
<td>Science, Technology, and Society Connections (STS)</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>Students will</td>
<td>The student can</td>
</tr>
<tr>
<td>• formulate questions about observed</td>
<td>• explain that technological problems often</td>
</tr>
<tr>
<td>relationships and plan investigations</td>
<td>require multiple solutions that involve</td>
</tr>
<tr>
<td>of questions, ideas, problems, and issues</td>
<td>different designs, materials, and processes,</td>
</tr>
<tr>
<td>• conduct investigations into relationships</td>
<td>and that have both intended and unintended</td>
</tr>
<tr>
<td>among observable variables and use a</td>
<td>consequences</td>
</tr>
<tr>
<td>broad range of tools and techniques to</td>
<td>• explain that scientific knowledge may lead to</td>
</tr>
<tr>
<td>gather and record data and information</td>
<td>the development of new technologies and new</td>
</tr>
<tr>
<td>• analyze data and apply mathematical and</td>
<td>technologies may lead to or facilitate</td>
</tr>
<tr>
<td>conceptual models to develop and assess</td>
<td>scientific discovery</td>
</tr>
<tr>
<td>possible solutions</td>
<td>• explain that the goal of technology is to</td>
</tr>
<tr>
<td>• work collaboratively in addressing</td>
<td>provide solutions to practical problems</td>
</tr>
<tr>
<td>problems and apply the skills and</td>
<td>• explain that scientific knowledge and theories</td>
</tr>
<tr>
<td>conventions of science in communicating</td>
<td>develop through hypotheses, the collection of</td>
</tr>
<tr>
<td>information and ideas and in assessing</td>
<td>evidence, investigation, and the ability to</td>
</tr>
<tr>
<td>results</td>
<td>provide explanations</td>
</tr>
<tr>
<td></td>
<td>• explain that the goal of science is knowledge</td>
</tr>
<tr>
<td></td>
<td>about the natural world</td>
</tr>
<tr>
<td></td>
<td>• explain that the products of technology are</td>
</tr>
<tr>
<td></td>
<td>devices, systems, and processes that meet given</td>
</tr>
<tr>
<td></td>
<td>needs; however, these products cannot solve</td>
</tr>
<tr>
<td></td>
<td>all problems</td>
</tr>
<tr>
<td></td>
<td>• explain that the appropriateness, risks, and</td>
</tr>
<tr>
<td></td>
<td>benefits of technologies need to be assessed</td>
</tr>
<tr>
<td></td>
<td>for each potential application from a variety</td>
</tr>
<tr>
<td></td>
<td>of perspectives, including sustainability</td>
</tr>
<tr>
<td></td>
<td>• describe science and technology applications</td>
</tr>
<tr>
<td></td>
<td>that have developed in response to human and</td>
</tr>
<tr>
<td></td>
<td>environmental needs</td>
</tr>
<tr>
<td></td>
<td>• explain that science and technology have</td>
</tr>
<tr>
<td></td>
<td>influenced, and have been influenced by,</td>
</tr>
<tr>
<td></td>
<td>historical development and societal needs</td>
</tr>
<tr>
<td></td>
<td>• explain how science and technology are</td>
</tr>
<tr>
<td></td>
<td>developed to meet societal needs and expand</td>
</tr>
<tr>
<td></td>
<td>human capability</td>
</tr>
<tr>
<td></td>
<td>• explain how science and technology have both</td>
</tr>
<tr>
<td></td>
<td>intended and unintended consequences for</td>
</tr>
<tr>
<td></td>
<td>humans and the environment</td>
</tr>
<tr>
<td></td>
<td>• explain that technological development may</td>
</tr>
<tr>
<td></td>
<td>involve the creation of prototypes, the testing</td>
</tr>
<tr>
<td></td>
<td>of prototypes, and the application of knowledge</td>
</tr>
</tbody>
</table>
Machine-scored questions

<table>
<thead>
<tr>
<th>Question Format</th>
<th>Number of Questions</th>
<th>Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Choice</td>
<td>44</td>
<td>73%</td>
</tr>
<tr>
<td>Numerical Response</td>
<td>16</td>
<td>27%</td>
</tr>
</tbody>
</table>

Program of studies outcomes

The design supports the integration of all Chemistry 30 general outcomes (GOs) as mandated in the Chemistry 20–30 Program of Studies, 2007 (Updated 2014).

Adjustments in the emphasis may be necessary because the examination includes machine-scored scenarios or contexts that cover more than one general or specific outcome. As a result, the examination may not necessarily be arranged sequentially by units but is instead built around scenarios or contexts that support STS connections; a set of questions may assess students’ ability to integrate several GOs.

Emphasis

The approximate emphasis of each unit in the examination is given below. The examination is limited to those expectations that can be measured by a machine-scored paper-and-pencil test. Therefore, the percentage weightings shown below will not necessarily match the percentage of class time devoted to each unit.

<table>
<thead>
<tr>
<th>Machine-scored Content</th>
<th>Range of Percentage Emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermochemical Changes</td>
<td>20%–22%</td>
</tr>
<tr>
<td>Electrochemical Changes</td>
<td>29%–32%</td>
</tr>
<tr>
<td>Chemical Changes of Organic Compounds</td>
<td>18%–20%</td>
</tr>
<tr>
<td>Chemical Equilibrium Focusing on Acid–Base Systems</td>
<td>29%–32%</td>
</tr>
</tbody>
</table>
**NEW** Diploma Examination Instructions Pages

Copyright 2019, the Crown in Right of Alberta, as represented by the Minister of Education, Alberta Education, Provincial Assessment Sector, 44 Capital Boulevard, 10044 108 Street NW, Edmonton, Alberta T5J 5E6, and its licensors. All rights reserved.

Duplication of this examination in any manner or its use for purposes other than those authorized and scheduled by Alberta Education is strictly prohibited.

The personal information collected in the Diploma Examinations Program is collected pursuant to section 33(c) of the Freedom of Information and Protection of Privacy Act (RSA 2000, C. F-25). This information will be used for the purpose of administering the Diploma Examinations Program as well as support programs and policy evaluation and measurement. Questions regarding the collection, use and disclosure may be directed to the Director, Diploma Programs, Provincial Assessment Sector, System Excellence, Alberta Education, 6th Floor, 10044 108 Street NW, 44 Capital Boulevard, Edmonton, AB T5J 5E6 or by telephone at 780-422-5160. (Dial 310-0000 to be connected toll-free from outside the Edmonton area.)

**November 2019**

**Chemistry 30**

**Grade 12 Diploma Examination**

**Description**

**Time: 3 hours.** This closed-book examination was developed to be completed in 3 hours; however, you may take up to 6 hours to complete the examination, should you need it.

This examination consists of 44 multiple-choice and 16 numerical-response questions, of equal value.

This examination contains sets of related questions. A set of questions may contain multiple-choice and/or numerical-response questions.

A chemistry data booklet is provided for your reference.

**Instructions**

- Use only an HB pencil for the answer sheet.
- Fill in the information on the back cover of the examination booklet and the answer sheet as directed by the presiding examiner.
- You are expected to provide your own calculator. You may use any scientific calculator that does not have prohibited properties or graphing calculator approved by Alberta Education.
- You must have cleared your calculator of all information that is stored in the programmable or parametric memory.
- You may use a ruler and a protractor.
- Read each question carefully.
- Consider all numbers used in the examination to be the result of a measurement or an observation.
- When performing calculations, use the values of the constants provided in the data booklet.
- If you wish to change an answer, erase all traces of your first answer.
- Do not fold the answer sheet.
- The presiding examiner will collect your answer sheet and examination booklet and send them to Alberta Education.
- Now read the detailed instructions for answering machine-scored questions.

**Note:** Additional tear-out pages at the back of this booklet may be used for your rough work. No marks will be given for work done on the tear-out pages.
**Multiple Choice**

- Decide which of the choices best completes the statement or answers the question.
- Locate that question number on the separate answer sheet provided and fill in the circle that corresponds to your choice.

**Example**

This examination is for the subject of

A. chemistry  
B. biology  
C. physics  
D. science

Answer: A

Record A on the answer sheet: ⭕ ★ ○ ○

**Numerical Response**

- Record your answer on the answer sheet provided by writing it in the boxes and then filling in the corresponding circles.
- If an answer is a value between 0 and 1 (e.g., 0.25), then be sure to record the 0 before the decimal place.
- Enter the first digit of your answer in the left-hand box. Any boxes on the right that are not needed are to remain blank.

**Examples**

**Calculation Question and Solution**

The average of the values 21.0, 25.5, and 24.5 is ______.  

(Record your three-digit answer in the numerical-response section on the answer sheet.)

Answer: 23.7

Record 23.7 on the answer sheet: 2 □ 3 □ 7  

Fill in the corresponding circles:

- 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9 □ 0 □
Sequencing Question and Solution

<table>
<thead>
<tr>
<th>Four Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Physics</td>
</tr>
<tr>
<td>2 Biology</td>
</tr>
<tr>
<td>3 Science</td>
</tr>
<tr>
<td>4 Chemistry</td>
</tr>
</tbody>
</table>

When the subjects above are arranged in alphabetical order, their order is ____, ____, ____ , and ____.

(Record all four digits of your answer in the numerical-response section on the answer sheet.)

Answer: 2413

Record 2413 on the answer sheet

Selection Question and Solution

<table>
<thead>
<tr>
<th>Five Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Art</td>
</tr>
<tr>
<td>2 Music</td>
</tr>
<tr>
<td>3 Physics</td>
</tr>
<tr>
<td>4 Biology</td>
</tr>
<tr>
<td>5 Chemistry</td>
</tr>
</tbody>
</table>

The science subjects in the list above are numbered ____, ____ , and ____.

(Record all three digits of your answer in any order in the numerical-response section on the answer sheet.)

Answer: 345

Record 345 on the answer sheet

Note: All answers containing only the three digits 3, 4, and 5, in any order, will be scored as correct.
**Scientific-notation Question and Solution**

The Faraday constant, expressed in scientific notation, is $a.bc \times 10^d$ C/mol e⁻. The values of $a$, $b$, $c$, and $d$ are ___, ___, ___, and ___.

(Record all four digits of your answer in the numerical-response section on the answer sheet.)

Answer: $9.65 \times 10^4$ C/mol e⁻

**Multiple-answer Matching Question and Solution**

<table>
<thead>
<tr>
<th>Continent</th>
<th>Country</th>
<th>Capital City</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 North America</td>
<td>4 France</td>
<td>7 Beijing</td>
</tr>
<tr>
<td>2 Europe</td>
<td>5 China</td>
<td>8 Ottawa</td>
</tr>
<tr>
<td>3 Asia</td>
<td>6 Canada</td>
<td>9 Paris</td>
</tr>
</tbody>
</table>

Using the numbers above, choose one continent and match it with a country in that continent and with that country’s capital city. (There is more than one correct answer.)

Number: ___, ___, ___, ___, and ___

(Record all three digits of your answer in the numerical-response section on the answer sheet.)

Answer: 168 or 249 or 357

**Record 168 on the answer sheet**

**Fill in the corresponding circles**

Note: The answers 168, 249, or 357 will be scored as correct.
Machine-scored Questions

Each examination contains both multiple-choice and numerical-response questions.

Some examination questions are organized into sets that relate to broad contexts; therefore, a set of questions may assess students’ ability to integrate several GOs. Some questions measure achievement of knowledge and/or skills; some also measure achievement of scientific process and communication skills outcomes and/or STS outcomes.

Answers for multiple-choice questions are recorded in the first section of the machine-scored answer sheet, and answers for numerical-response questions are recorded in the second section on the same side of the same machine-scored answer sheet.

Multiple-choice questions are of two types: discrete and context dependent. A discrete question stands on its own without any additional directions or information. It may take the form of a question or an incomplete statement. A context-dependent question provides information separate from the question stem. Many of the multiple-choice questions are context dependent. A particular context may be used for more than one multiple-choice question as well as for one or more numerical-response questions.

Numerical-response questions can be used for the calculation of numerical values, for the selection of numbered events or structures from a list or diagram, and for the determination of the sequence of listed events. Students should remember that in some numerical-response questions, a number may be used more than once in an answer and there may be more than one correct answer.
Examples of numerical-response questions

Calculation question

Use the following information to answer numerical-response question 1.

Methane gas, CH\textsubscript{4}(g), can be produced in a laboratory by reacting carbon disulfide, CS\textsubscript{2}(g), and hydrogen gas, H\textsubscript{2}(g), as represented by the following equation.

\[ \text{CS}_2(g) + 4 \text{H}_2(g) \rightleftharpoons \text{CH}_4(g) + 2 \text{H}_2\text{S}(g) \]

Initially, at a temperature of 90 °C, 0.18 mol/L CS\textsubscript{2}(g) and 0.31 mol/L H\textsubscript{2}(g) are present in a closed container. When equilibrium is established, 0.13 mol/L CS\textsubscript{2}(g) is present.

Numerical Response

1. The concentration of hydrogen gas present in the container at equilibrium is \_\_\_\_\_ mol/L.

(Record your three-digit answer in the numerical-response section on the answer sheet.)

Answer: 0.11
Sequencing question

Use the following information to answer numerical-response question 2.

Several metals are used in the manufacture of permanent magnets. A student wanted to compare the relative strengths of some of these metals and their corresponding ions as oxidizing and reducing agents. He immersed a strip of each metal in an aqueous solution of a metallic ion and recorded the following observations.

**Selected Observations**

\[ \text{Co}^{2+}(aq) + \text{Nd}(s) \rightarrow \text{Co}(s) + \text{Nd}^{2+}(aq) \]

\[ \text{Y}^{3+}(aq) + \text{Nd}(s) \rightarrow \text{no evidence of reaction} \]

\[ \text{Sm}^{2+}(aq) + \text{Y}(s) \rightarrow \text{no evidence of reaction} \]

**Chemical Species**

1. Co(s) 5. Co\(^{2+}\)(aq)
2. Nd(s) 6. Nd\(^{2+}\)(aq)
3. Sm(s) 7. Sm\(^{2+}\)(aq)
4. Y(s) 8. Y\(^{3+}\)(aq)

**Numerical Response**

2. The oxidizing agents, listed from strongest to weakest, are numbered

   Strongest, ________, ________, and ________.

   (Record all four digits of your answer in the numerical-response section on the answer sheet.)

Answer: 5687
Selection question (I)

*Use the following information to answer numerical-response question 3.*

A Venn diagram is used to identify the similarities and differences between acids and bases.

![Venn diagram](image)

**Characteristics and Examples of Acids and Bases**

1. Water
2. Carbonic acid
3. Sodium carbonate
4. Sodium hydrogen carbonate
5. Can be diprotic
6. Can be monoprotic
7. Accepts protons
8. Donates protons

**Numerical Response**

3. The characteristics and examples that belong in Section II of the Venn diagram are numbered _____, _____, _____, and _____.

   (Record all **four digits** of your answer in any order in the response boxes at the bottom of the screen.)

**Answer:** 1456 in any order
Selection question (II)

Use the following information to answer numerical-response question 4.

In order to prepare chemicals for industry, many organic compounds must be separated from their natural mixtures.

<table>
<thead>
<tr>
<th>Organic Material</th>
<th>Process</th>
<th>Type of Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1-chloropropane</td>
<td>5 Fractional distillation</td>
<td>7 Elimination</td>
</tr>
<tr>
<td>2 1-chloropropene</td>
<td>6 Solvent extraction</td>
<td>8 Substitution</td>
</tr>
<tr>
<td>3 Crude oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Refined bitumen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The propane reacts with chlorine gas in the presence of ultraviolet light in a type of reaction numbered _________ to produce hydrogen chloride gas and the organic material numbered _________.

(Record your answer in the numerical-response section on the answer sheet.)

Answer: 3581
Scientific-notation question

Use the following information to answer numerical-response question 5.

Potassium sorbate, C₅H₇COOK(aq), is used as a preservative in beverages to inhibit the growth of mould. The equilibrium formed when the sorbate ion, C₅H₇COO⁻(aq), reacts with water can be represented by the following equation.

\[
\text{C}_5\text{H}_7\text{COO}^-(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{C}_5\text{H}_7\text{COOH}(aq) + \text{OH}^-(aq) \quad K_b = 5.8 \times 10^{-10}
\]

Although the potassium sorbate is added to the beverage, it is the sorbic acid, C₅H₇COOH(aq), that inhibits the growth of mould.

Numerical Response

5. The value of \(K_a\) for sorbic acid, expressed in scientific notation, is \(a.b \times 10^{-c}\).
   The values of \(a\), \(b\), and \(c\) are _____, _____, and _____.
   
   (Record all three digits of your answer in the numerical-response section on the answer sheet.)

Answer: 175
Multiple-answer matching question

Use the following information to answer numerical-response question 6.

<table>
<thead>
<tr>
<th>Organic Compound</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Octane</td>
<td>5 A fuel for vehicles</td>
</tr>
<tr>
<td>2 Methane</td>
<td>6 A food preservative</td>
</tr>
<tr>
<td>3 Methanol</td>
<td>7 A fuel for home gas furnaces</td>
</tr>
<tr>
<td>4 Ethanoic acid</td>
<td>8 An automobile antifreeze component</td>
</tr>
</tbody>
</table>

**Numerical Response**

6. Match the numbers of **two** of the organic compounds listed above with one of their possible uses. (There is more than one correct answer.)

   __________ is an organic compound used as __________.
   Record in the **first** column                        Record in the **second** column

   __________ is an organic compound used as __________.
   Record in the **third** column                        Record in the **fourth** column

(Record your answer in the numerical-response section on the answer sheet.)

Answer: 1525, 1527, 1535, 1538, 1546, 2515, 2535, 2538, 2546, 2715, 2735, 2738, 2746, 3515, 3525, 3527, 3546, 3815, 3825, 3827, 3846, 4615, 4625, 4627, 4635, or 4638
Use the following information to answer numerical-response question 12.

A student observes a system at equilibrium between a silver nitrate solution and copper solid. The net ionic equation for this equilibrium is shown below.

\[ 2 \text{Ag}^{+}(\text{aq}) + \text{Cu(s)} \rightleftharpoons 2 \text{Ag(s)} + \text{Cu}^{2+}(\text{aq}) + 54.1 \text{kJ} \]

colourless

<table>
<thead>
<tr>
<th>Materials Involved in Shifting Equilibrium</th>
<th>Direction of Equilibrium Shift</th>
<th>Qualitative Observation After Shift in Equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hot plate</td>
<td>5 Toward products</td>
<td>7 Solution turns lighter blue</td>
</tr>
<tr>
<td>2 Ice water bath</td>
<td>6 Toward reactants</td>
<td>8 Solution turns darker blue</td>
</tr>
<tr>
<td>3 Concentrated solution of NaCl(aq)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Concentrated solution of AgNO₃(aq)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numerical Response

12. Using the numbers above, choose one material that would result in a shift in equilibrium and match it with the direction of the equilibrium shift and with a qualitative observation that would confirm this shift. (There is more than one correct answer.)

Number:

Material chosen | Direction of equilibrium shift | Qualitative observation
--- | --- | ---
167 | 258 | 367 | 458

(Record all three digits of your answer in the numerical-response section on the answer sheet.)

Answer: 167, 258, 367, or 458
Assessment of Skills and STS Outcomes

*Chemistry 30 Diploma Examination* questions are intended to measure students’ understanding of chemistry concepts. It is important to remember that some questions will measure students’ understanding and use of skills associated with scientific inquiry, and some questions have been designed to measure students’ understanding of the connections between science and technology, and between science, technology, and society. As a result, many questions measure how well students can apply the skills and knowledge they have acquired in science to everyday life.

Teachers may find it helpful to use the following acronym when interpreting the program of studies document and planning instruction.

**A** – attitudes (for learning and inquiry in chemistry, skills, and knowledge)
**S** – skills
**K** – knowledge

Specific skills and STS concepts that can be tested are identified within the program of studies in regular typeface.

Teachers and individuals in industry, business, and post-secondary institutions have been helpful both in providing real-life contexts for STS questions and in making connections between real life and the program of studies. The development of examination questions, from the writing stage until they appear on an examination, may take a number of years.
Trends in Student Performance

In the thermochemistry unit, some students always use the specific heat capacity of water, not recognizing that often they need to use a different value. The students show a basic competence in those questions that assess calculations of enthalpies of formation and reaction, using either Hess’s law or data from a calorimetry experiment. However, in a calorimetry experiment the students often forget to subtract the final mass of a substance used in the calorimetry chemical reaction from the initial mass given in the design or observation table of the experiment. Students have difficulty identifying liquid water as a product of combustion in a closed system and gaseous water as a product of combustion in an open system. Students are able to interpret enthalpy diagrams that either include or exclude representations of the activation energy. However, they have more difficulty in relating these enthalpies to the breaking and forming of bonds. Students commonly use the heat of reaction of an equation instead of the molar enthalpy when determining the enthalpy change of a reaction after being given a specific mass or number of moles that react.

In the electrochemistry unit, students can identify redox reactions and produce balanced equations for the overall reactions where there is no disproportionation. They can identify oxidizing and reducing agents, but have difficulty producing equations for half-reactions when presented with an overall reaction involving species that are not in the Table of Standard Electrode Potentials in the data booklet. Students are very successful at determining oxidation numbers, with the exception of oxygen in peroxides. They are able to balance redox reactions in acidic solutions if all of the species are given, but experience difficulty if given a skeleton equation where H⁺(aq) and H₂O(l) are not identified as products or reactants. They can calculate concentrations involved in redox titrations when the overall reaction equation is given, as well as the potential differences associated with overall reactions whose constituent half-reactions are in the Table of Standard Electrode Potentials. However, when half-reactions are not in the table, or a different reference half-reaction is used, students are much less successful in calculating concentrations, reduction potentials, or potential differences. Students are successful doing calculations involving Faraday’s Law when the mole-to-mole ratio is 1:1, but have difficulty with other mole ratios. Students are successful at identifying and labelling a voltaic cell, but have difficulty identifying and labelling electrolytic cells.

The organic chemistry unit is divided into three sections: the naming and classifying of compounds, the physical properties of organic compounds, and chemical reactions involving organic compounds. Students are very successful at naming and classifying compounds, somewhat successful at questions involving physical properties, and less successful at questions involving chemical properties. Students also have a hard time relating variations in boiling point to differences in intermolecular bonding. Students are very capable of identifying the region where different hydrocarbons are collected in a fractional distillation tower, but are weak at identifying the processes that occur to separate the organic compounds from natural mixtures and solutions. They have little success with questions that involve solvent extraction. Students succeed at identifying polymers when the monomers are given, but struggle with determining the monomers from a given polymer.

In the equilibrium unit, students have difficulty in identifying the criteria that apply to a chemical system at equilibrium. They are very successful in using Le Châtelier’s Principle to make predictions if the stresses are explicitly stated—except in the case of a volume or pressure stress—and in predicting the stress when the data are expressed graphically. They have more difficulty if the stresses are stated implicitly, as in the use of hydroxide ions as a means
of removing hydronium ions, or the use of silver ions to remove chloride or bromide ions. In questions involving the use of ICE tables, students are able to use them to calculate equilibrium concentrations, but often do not use them to calculate initial concentrations, especially for weak acids and bases whose pH and either $K_a$ or $K_b$ are given. Calculations linking pH and pOH, or linking $K_a$ and $K_b$, are completed successfully, but students have more trouble linking pH with either concentration, $K_a$ or $K_b$ for weak acids or weak bases, respectively. When working with graphs students can identify the regions of a titration curve, but find it hard to make qualitative predictions of the pH at the equivalence points associated with weak acid–strong base and strong acid–weak base titrations. Students are able to choose an appropriate buffer when given a selection, but have difficulty determining the result of using the buffer.

**Clarifications**

**General**

In chemistry, experiments are planned and performed, observations and measurements are made, and then either an inference is drawn, or values are calculated. Many students do not distinguish between an observation and an inference when they are asked to analyze a laboratory experiment. For example, if asked to list the observations made during the electrolysis of aqueous sodium bromide, NaBr(aq), students may list as observations that hydrogen gas was released at the cathode, that bromine liquid was formed at the anode, and that the hydroxide ion concentration in the electrolyte increased. These are not observations; these are inferences drawn from the observations of a gas being released at one electrode, an orange liquid being formed at the other electrode, and the solution turning red litmus paper blue.

When identifying the variables required to investigate a given problem statement or to test a given hypothesis, students often choose quantities that were derivable from measured quantities, rather than quantities that are directly measurable. For example, when testing a hypothesis related to acid–base equilibrium, students choose quantities such as $K_a$, $K_b$, or hydronium ion concentration as an appropriate responding variable, rather than pH. The variables $K_a$, $K_b$, and hydronium ion concentration are not directly measurable, as they have to be calculated from the observed pH. Thus pH is the responding variable in this investigation.

Students understand that controlled variables take on constant values during the course of an experiment. However, they may not understand the concept that a controlled variable is a variable that the experimenter could have varied, but chose not to. For example, in an experiment investigating the boiling points of alcohols as a function of the molar mass, one possible controlled variable is the atmospheric pressure, another might be the number of branches in the structure of the alcohol, and another might be the location of the hydroxyl functional group in the alcohol. The older term for controlled variables, *variables held constant*, shows the meaning in the two steps. First the quantity is selected, and it could possibly vary. Second, the experimenter arranges his or her experimental setup so that this variable can be shown to remain fixed in value.

Controlled variables cannot include any parameter that is not under the direct control of the experimenter. In this instance, the type of compound, alcohol, cannot be considered a controlled variable, as varying this parameter will change the essential nature of the hypothesis being investigated.
Unit A

In the assessment of outcomes A1.8k and A1.1s:

• Students should be familiar with different designs that can be used for the measurement of energy changes in a chemical system. These include designs where the temperature change of the container is accounted for, not just that of its contents.

• Some detailed calculations will include the temperature change of the calorimeter, but some may be answered qualitatively. As one example, a calorimeter composed of a material with a large specific heat capacity will undergo a smaller temperature change than a calorimeter composed of a material with a significantly lower specific heat capacity. Another example relies on the insulating properties of polystyrene to predict that any temperature change of the cup calorimeter can be assumed to be negligible.

• In experiments using polystyrene calorimeters, the limiting measurement is the measurement of temperature using liquid-in-glass thermometers, where the errors can be on the order of 10%. When volumes of liquids used in calorimetry are measured, any error reduction due to the precision obtained by using a volumetric pipette rather than a graduated cylinder is smaller than the error introduced by temperature measurements. Accordingly, the use of a volumetric pipette is not necessary and is not considered standard practice for calorimetry experiments.

• When a small amount (less than 10% of the mass of the solvent) of solute is added to a solvent, the mass $m$ in the formula $Q = mc\Delta T$ or $\Delta H = mc\Delta T$ can be taken as the mass of the solvent, and $c$ taken as the specific heat capacity of the solvent. Answers that use the mass of the solution for $m$ require the use of the specific heat capacity of the solution for $c$, and this quantity may or may not be similar to the specific heat capacity of the solvent.

• Outcome A1.8k states that the students are to use calorimetry data to determine the enthalpy change in chemical reactions. This includes various types of chemical reactions, including combustion and neutralization.

In the assessment of outcomes A1.8k and A1.9k:

• When enthalpies of combustion are determined empirically, they are determined in a bomb calorimeter and the water produced is in liquid form. In the open environments that are familiar in everyday life, the combustion of most substances releases heat sufficient to convert any water produced from the reaction into water vapour. Often, a diploma examination question refers to an enthalpy of combustion for a fuel such as propane in a barbecue or butane in a lighter. Since these examples represent reactions that are performed in an open environment, students should use water vapour as a product to determine acceptable values for the enthalpy of combustion.

• On diploma examinations, the general principle that will be followed is that if combustion reactions are performed in a closed system, liquid water will be the product; and if the combustion occurs in an open system, water vapour will be the product. Students are not required to have existing knowledge of or exposure to a bomb calorimeter.
In the assessment of outcomes A2.3k, A1.3s, and A2.3s:

- On the diploma examination, enthalpy diagrams will be similar to the two figures shown below. Enthalpy diagrams can be used to indicate relative positions for exothermic or endothermic reactions (refer to Figure 1). We cannot determine an exact value for the potential energy of a substance, but we can determine values for enthalpies of reaction, using enthalpies of formation (refer to Figure 2).

![Figure 1](image1)

![Figure 2](image2)

In the assessment of outcome A2.3s:

- Students will be expected to calculate the efficiency of a thermal energy source and to explain the discrepancies between theoretical and measured values obtained from calorimetry experiments. They are expected to predict whether a given source of error will lead to a lower or to a higher calculated value for an enthalpy of reaction, as well as to predict whether an observed enthalpy or temperature change is lower or higher than the theoretical enthalpy or temperature change.

In the assessment of outcome A2.4k:

- Catalyst questions may involve biological enzymes as well as catalysts in nonliving systems, but any discussion of enzyme mechanisms is beyond the scope of the program of studies.
In the assessment of outcome B1.2k

• The term *disproportionation* will be used to describe a redox reaction in which an entity is both reduced and oxidized. A disproportionation reaction is represented below.

\[ 2 \text{H}_2\text{O}_2(l) \rightarrow 2 \text{H}_2\text{O}(l) + \text{O}_2(g) \]

In the assessment of outcomes B1.2k and B1.7k:

• For assigning oxidation numbers, the following guidelines will be used:
  
  – Oxygen always has an oxidation number of −2, except for peroxides, where oxygen’s oxidation number is −1. For example, in hydrogen peroxide, \( \text{H}_2\text{O}_2(l) \), or barium peroxide, \( \text{BaO}_2(s) \), oxygen’s oxidation number is −1.
  
  – Hydrogen always has an oxidation number of +1, except for hydrides of metals in Groups 1 and 2 of the Periodic Table, where hydrogen’s oxidation number is −1.
  
  – Carbon can have fractional oxidation numbers, and the oxidation number of carbon in any of its compounds will represent an average oxidation number. For example, in the case of propane, \( \text{C}_3\text{H}_8 \), the oxidation number is \( \frac{8}{3} \). Considering the oxidation number of each of the two end carbons as −3, and of the middle carbon as −2, is beyond the scope of the program of studies.

In the assessment of outcome B1.7k:

• Students are expected to devise a balanced half-reaction in an acidic or neutral, but not basic, solution. They are expected to balance chemical equations that occur in basic environments given the species, but not to devise their own half-reactions. Students are expected to balance disproportionation reaction equations.

In the assessment of outcome B1.2s:

• Students are expected to select glassware as it is used in standard best-practice volumetric analysis. Shortcuts, such as the use of burettes or graduated cylinders in place of volumetric pipettes, are not considered best practice.
In the assessment of outcomes B2.1k and B2.3k:

• Line or cell notation can be used to represent electrochemical cells.
  
  – A voltaic cell requires a porous barrier or salt bridge to separate the half-cells. The convention is that the substance constituting the anode is listed at the far left, and the substance constituting the cathode is listed at the far right. The line notation of a copper–silver voltaic cell could be represented as

  \[
  \text{Cu(s)} \mid \text{Cu}^{2+}(\text{aq}) \parallel \text{Ag}^+(\text{aq}) \mid \text{Ag(s)}
  \]

  – An electrolytic cell does not require a porous barrier or salt bridge to separate the half-cells. The line notation of a cobalt(II) nitrate electrolytic cell could be represented as

  \[
  \text{C(s)} \mid \text{Co}^{2+}(\text{aq}), \text{NO}_3^-(\text{aq}) \mid \text{C(s)}
  \]

In the assessment of outcome B2.1s:

• In addition to a labelled diagram, students are expected to predict the observations (e.g., pH changes and colour changes in the electrolyte, mass changes and colour changes at the electrodes) for an electrochemical cell.

In the assessment of outcome B2.4k:

• Students are expected to recognize that predicted reactions do not always occur; for example, the chloride anomaly occurs during the electrolysis of solutions containing chloride ions and water as the strongest reducing agents. A common misconception is that if the minimum voltage for the electrolysis of water were applied, then the oxidation of water would occur rather than the oxidation of chloride ions. \textbf{This is not correct.} The reduction potentials found on the reduction potential table are determined by comparing the reduction potential of a given half-cell to the standard hydrogen half-cell. The standard hydrogen reduction potential is the reference potential against which all half-reaction potentials are assigned. This is how the reduction potentials for oxygen and hydrogen ions (+1.23 V) and chlorine (+1.36 V) half-cells are obtained. During electrolysis, the theoretical minimum voltage is the difference in reduction potential between the oxidizing agent and the reducing agent. An excess voltage, called the overvoltage, is required in order for a reaction to occur. For example, as the voltage to a standard sodium chloride electrolytic cell is increased, the chloride ions are oxidized first. The reason for this is that the overvoltage for the oxidation of water is greater than the overvoltage for the oxidation of chloride ions. A much higher potential than expected is required to oxidize water. Basically, the phenomenon is caused by difficulties in transferring electrons from the species in the solution to the atoms of the electrode across the electrode–solution interface. Because of this situation, \(E^\circ\) values must be used cautiously when one is predicting the actual order of oxidation or reduction of species in an electrolytic cell.
In the assessment of outcomes B2.5k and B2.6k:

- All $E^\circ$ values refer to reduction potentials, whether associated with an oxidation half-reaction equation or a reduction half-reaction equation.

In the assessment of outcomes B2.5k and B2.3s

- Standard state conditions and corresponding potential difference values imply the use of 1.0 mol/L reagents. The larger the concentration of the reactants, the larger the potential difference value. The Nernst equation would be required to calculate potential difference values as a function of reactant and product concentrations in a redox reaction and is beyond the scope of the program of studies. However, students should know that as the reaction proceeds, the voltage generated will decrease as reactants are converted to products until reaching equilibrium, at which point the battery does not deliver any noticeable current.

- Biological and other systems sometimes involve species that are not at 25 °C and 1.0 mol/L. Therefore, the $E^\circ$ values given in any question involving these systems may not be the same as those shown in the data booklet, where standard temperature is 25 °C and standard concentration is 1.0 mol/L.
Questions in all units of the course may include contexts involving organic compounds.

In the assessment of outcome C1.3k:

- Use of the term hydrocarbon should be strictly limited to describing molecules composed of only carbon and hydrogen atoms. For organic molecules that include other atoms, including oxygen and halogens, the term hydrocarbon derivative is appropriate.

- An aromatic compound contains one or more benzene rings. The benzene ring may be represented as shown in diagrams 1 and 2 below.

- When one of the hydrogen atoms in a hydrocarbon is replaced by a hydroxyl group, either an alcohol or a phenol may be produced. The term alcohol will be used whenever the original hydrocarbon is aliphatic. The term phenol will be used whenever the hydroxyl group is attached directly to the benzene ring. Benzyl alcohols, where both a benzene ring and a hydroxyl group are attached to a straight side chain, and not to the benzene ring, are outside the scope of the program of studies.

- For the Chemistry 30 Diploma Examination, when determining whether a compound is saturated or unsaturated, only the presence of carbon–carbon double or triple bonds makes a compound unsaturated. Double bonds in a functional group will not characterize a compound as being unsaturated. For example, propanoic acid is classified as a saturated compound because all of its carbon atoms are joined to each other by single bonds. The double bond between carbon and oxygen does not make propanoic acid unsaturated.

- The bromine test will be negative for cyclohexane, \( \text{C}_6\text{H}_{12}(l) \), and positive for cyclohexene, \( \text{C}_6\text{H}_{10}(l) \), where the double bond is carbon–carbon, but will be negative for ethanoic acid, \( \text{CH}_3\text{COOH(aq)} \), where the double bond is carbon–oxygen, not carbon–carbon.

- A negative bromine test with a saturated organic compound does not mean that there is no reaction with bromine. It means that there is no immediate or fast reaction between the saturated compound and the bromine. However, there will be a slow substitution reaction if the bromine reacts in the presence of UV light. For most saturated compounds, this substitution reaction will take 24 hours or more to go to completion.

- Aromatic compounds are not considered to be either saturated or unsaturated. Compounds with both benzene rings and carbon–carbon double bonds, such as phenylethene, are outside the scope of the program of studies.

- The wording of outcome C1.3k puts clear limits on the compounds that can be named or drawn. However, these limits do not apply to outcomes C1.4k, C1.5k, C1.6k, C2.1k, and C2.2k. In assessing these outcomes, students will be asked to consider compounds outside the limits set by outcome C1.3k, but only when both a name and a structural formula (or line diagram) have been given.
In the assessment of outcome C1.5k:

• Formulas such as \( \text{C}_2\text{H}_6(\text{g}) \), \( \text{C}_2\text{H}_5\text{Cl}(\text{l}) \), and \( \text{C}_6\text{H}_6(\text{l}) \) will be referred to as molecular formulas.

In the assessment of outcome C1.6k:

• For an organic compound to be highly soluble in water, there must be significant hydrogen bonding present. It is not sufficient for the molecule to be polar. For example, the polar molecule 1-chloropropane cannot form hydrogen bonds, so it is not soluble in water. The solubility rules based on an empirical generalization, such as \textit{like is soluble in like}, are reasonable only with a three-way classification such as nonpolar, polar, and hydrogen-bonded. However, on the diploma examinations students are expected to predict the solubility of organic molecules only in nonpolar solvents such as hexane and in hydrogen-bonded solvents such as water.

In the assessment of outcome C1.3s:

• Interpreting the results of a test using aqueous bromine or a potassium permanganate solution to distinguish between saturated and unsaturated aliphatic hydrocarbons can be done in various ways. One way is to analyze the original and final colours of the organic sample before and after the aqueous bromine or potassium permanganate solution has been added. Another way is to analyze the original and final colours of the aqueous bromine or potassium permanganate solution before and after it is added to the organic sample.

In the assessment of outcomes C2.1k and C2.2k:

• For the diploma examination, elimination is considered a type of chemical reaction in which atoms are removed from adjacent carbons in a single reactant. The organic product of an elimination reaction will have a carbon–carbon double bond. Cracking reactions, in which alkanes are reduced to alkenes, are included as elimination reactions, as the alkenes all have carbon–carbon double bonds. This definition distinguishes this reaction type from a condensation reaction, in which two molecules react and their interaction produces a water molecule.

In the assessment of outcome C2.2k:

• For the diploma examination, students are expected to know two types of substitution reaction. The first is a reaction in which a hydrogen atom in a hydrocarbon or a hydrocarbon derivative is replaced by another atom or by a functional group. One such example is the production of chloromethane and hydrogen chloride from the reaction of methane and chlorine. The second is a reaction in which an atom or functional group in a hydrocarbon derivative is replaced by another atom or functional group. One such example is the reaction of 1-bromoethane in a basic solution to produce ethanol and bromide ions.
In the assessment of outcome C2.3k:

- Knowledge of both types of polymerization reaction (addition and condensation) will be tested, either by identifying the monomers involved in the production of a given polymer or by identifying the polymer formed from given monomers.

- The naming of polymers on the Chemistry 30 Diploma Examination will be limited to the monomer name being given (e.g., the given monomer name chloroprene will result in the polymer name polychloroprene) or the monomer represented will be one that the students will be expected to name (e.g., the monomer representation \[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{C} - \text{C} = \text{C} & \quad \text{H}
\end{align*}
\] will result in the polymer name polypropene).
Unit D

In the assessment of outcome D1.1k:

• In a closed system mass is conserved, but conservation of mass does not confirm that equilibrium has been established in a chemical system.

In the assessment of outcome D1.3k:

• There is some confusion about the ways in which pressure can be increased and how it will affect an equilibrium system. Three methods to increase pressure are reducing the volume of the reaction container, adding an inert gas, and adding a reactant or product gas.

  – Increasing the pressure by reducing the volume of the container causes the system to alleviate the increased pressure by reducing the total number of gaseous molecules in the system. Equilibrium will therefore shift to the side with the lesser number of gas molecules.

  – Adding an inert gas increases the total pressure but has no effect on the concentration or partial pressures of the individual reactants or products. Therefore, there is no shift in the equilibrium.

  – Adding a reactant or product gas will shift the equilibrium away from what is added, whereas removing a reactant or product gas will shift the equilibrium toward what is removed.

• If the total volume available to an equilibrium system is adjusted, the value of the equilibrium constant for that system will not change, provided there is no change in temperature. The only stress that can change the value of the $K_c$ for an equilibrium is a change in the system temperature. Although the equilibrium constant does not change when a system undergoes a change in pressure due to a change in volume, the position of the equilibrium can still change. A particular equilibrium set of reactant and product equilibrium concentrations is called an equilibrium position. At any particular temperature, there are many equilibrium positions but only one value for $K_c$.

• A change in temperature of an equilibrium system changes the value of the equilibrium constant, which is a measure of the extent to which a given reaction occurs. If the temperature of the equilibrium system below is decreased, the equilibrium constant value will increase.

$$A(g) + B(g) \rightleftharpoons C(g) + \text{energy}$$

If the temperature of the equilibrium system above is increased, the equilibrium constant value will decrease.
In the assessment of outcomes D1.3k and D1.4k:

- There is a common misconception that when the total pressure of a gaseous equilibrium is changed, the value of the \( K_c \) for that equilibrium will also change.

In the assessment of outcome D1.4k:

- Students are expected to predict how a wide range of factors affect equilibrium and/or the equilibrium constant.

- Students are expected to write equilibrium constant expressions for homogeneous and non-homogeneous (Brønsted–Lowry acids and bases) equilibria. The diploma examination will employ the convention of including in equilibrium expressions only substances that can vary in concentration. Gases must be included since the concentration of a gas can be altered by varying the pressure on it. For example,

\[
CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g) \\
K_c = \frac{[H_2(g)][CO_2(g)]}{[CO(g)][H_2O(g)]}
\]

- Aqueous ions and/or gases in solution must be included since the concentration of aqueous ions and/or gases can be altered by varying the volume of solvent.

- In heterogeneous equilibria pure liquids and solids are not included since their concentration (density) cannot be varied significantly. For example,

\[
CH_3COOH(aq) + H_2O(l) \rightleftharpoons CH_3COO^-(aq) + H_3O^+(aq) \\
K_c = \frac{[CH_3OO^-(aq)][H_3O^+(aq)]}{[CH_3COOH(aq)]}
\]

- In homogeneous equilibria of liquids, all liquids are included since the concentrations can be varied by changing the relative amounts of the mixed liquids. For example,

\[
CH_3COOH(l) + CH_3CH_2OH(l) \rightleftharpoons CH_3COOCH_2CH_3(l) + H_2O(l) \\
K_c = \frac{[CH_3COOCH_2CH_3(l)][H_2O(l)]}{[CH_3COOH(l)][CH_3CH_2OH(l)]}
\]
• For predictions of whether reactants or products are favoured in reversible reactions, the magnitude of the $K_c$ value is only a general guideline. A $K_c$ value greater than 1 does not always mean products are favoured and a $K_c$ value less than 1 does not always mean that the reactants are favoured. This is valid if a reaction has the same number of reactant and product molecules in the balanced chemical equation. When the numbers of reactant and product molecules are not the same, the $K_c$ value may be misleading in determining the extent of reaction. An analysis of the extent to which reactants are converted to products may be a better indication of whether reactants or products are favoured.

• Students are not expected to be able to predict whether or not a reaction is quantitative.

In the assessment of outcome D1.6k:

• The terms monoprotic and polyprotic need to be used with care with amphiprotic species, as such a species may be polyprotic as an acid yet monoprotic as a base. For example, the dihydrogen phosphate ion $\text{H}_2\text{PO}_4^-$ (aq) is polyprotic as an acid, capable of donating two protons, yet monoprotic as a base, because it can accept only one proton. In contrast, the hydrogen phosphate ion $\text{HPO}_4^{2-}$ (aq) is monoprotic as an acid, capable of donating only one proton, yet polyprotic as a base, because it can accept two protons. In diploma examinations, every attempt will be made to define the context in which amphiprotic species are reacting, so that it can be determined precisely whether a species is monoprotic or polyprotic. The terms monobasic and polybasic, although less ambiguous than the terms monoprotic and polyprotic, will not be used on any diploma examination.

In the assessment of outcome D1.7k:

• The terms amphiprotic and amphoteric are used synonymously to describe substances that can act as either proton acceptors or proton donors. In the diploma examinations, the term amphiprotic will be used.

• Amphiprotic species are species that have an ability to act as either an acid or a base: for example, $\text{H}_2\text{PO}_4^-$ (aq) or $\text{HCO}_3^-$ (aq). Because of this property, the pH of an amphiprotic species cannot be determined with the simple $K_a$ expression used to determine the pH of a weak acid. Students are not expected to determine the pH of an amphiprotic species, and will not be asked to do so on the diploma examination.

In the assessment of outcome D1.8k:

• Students are required to recognize that a buffer system is composed of relatively equal amounts of a weak acid and its conjugate base and maintains a nearly constant pH when diluted or when small amounts of strong acid or strong base are added. Students are not expected to calculate the pH of a buffer solution given the concentration of the conjugate acid and its base pair and/or when utilizing the value of $K_a$. 
In the assessment of outcomes D1.8k and D1.3s:

- On a titration curve representing the titration of a weak acid with a strong base (or a strong acid with a weak base), one or more buffer regions occur. For these graphs the buffer regions are the flatter portion of the titration curve that occurs before and between the equivalence point(s). In these regions, the strong base is added to the weak acid, resulting in the acid converting into its conjugate base, until both are present in similar concentrations. The flat region after the final equivalence point is not a buffering region and is due to the large amount of strong base in the solution resulting in a consistent pH.

- A buffer is defined as the presence of a conjugate acid–base pair that is in an equilibrium state. The addition of an acid or a base will react with the buffer system, maintaining a relatively constant pH.

- A buffer region is not defined as being any area on a pH graph where the titration graph of pH as a function of added titrant is essentially flat. A strong monoprotic acid–strong monoprotic base titration would exhibit flat regions at the beginning of the titration and at the end, separated by a near-vertical portion containing the single equivalence point. The reason that these regions are flat is that there is excess strong acid or strong base present.

In the assessment of outcomes D2.1k, D2.2k, and D2.4s:

- The $K_a$ values provided in the Relative Strengths of Acids and Bases at 298.15 K table in the data booklet are experimental values that have two significant figures. As a result, calculated values resulting from the use of these data will generally be to two significant figures for a calculation of $K_b$ and to two decimal places for a calculation of pH or pOH.

- Teachers may find it necessary to review the proper use of scientific notation, and the use of the quantities millimoles and millimoles per litre, when completing calculation-based problems.

In the assessment of outcome D2.2k:

- Students are expected to be as familiar with calculations involving $K_b$ as they are for calculations involving $K_a$.

- Students are expected to know that $K_a \times K_b = K_w$. 
In the assessment of outcome D2.3k:

- Students will not be expected to solve questions involving the pH of weak acids and bases by using the quadratic equation. When such questions are asked in numerical-response form, the question will be double-keyed, so both the answer calculated using the quadratic formula and the answer based on the approximation method would be marked as correct.

- The use of the approximation method to solve acid–base equilibrium expressions is acceptable only when solving the equilibrium law equation results in a quadratic expression and the original concentration of the acid or base is one-thousand-fold greater than the value of $K_a$ or $K_b$.

- If the student is given the pH or pOH of an acid or base whose value of $K_a$ or $K_b$ is known, the approximation method should not be used to calculate the equilibrium concentration or the initial concentration.

In the assessment of outcome D1.3s:

- Students are expected to know the terms equivalence point and endpoint. Equivalence point refers to the point at which the reactants are stoichiometrically equivalent. Thus, students may be asked to indicate on a graph where the equivalence point for a reaction occurs. The term endpoint will be used within the context of an indicator; for example, 40.2 mL was used to titrate a sample to the bromothymol blue (indicator) endpoint.

- Students are expected to know that the pH at the equivalence point is not always equal to 7. They should be able to explain when and why the pH at the equivalence point will be equal to 7 (strong acid–strong base), greater than 7 (weak acid–strong base), and less than 7 (strong acid–weak base). The computation of the exact pH at the equivalence point is beyond the scope of the program of studies.
WHMIS 2015

The Workplace Hazardous Materials Information System (WHMIS) has been used in Canada since 1988 for the labelling and classification of hazardous workplace chemicals. The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is being adopted by countries around the world in order to enable a consistent international chemical classification and labelling system. In Canada, WHMIS 1988 was amended in February 2015 to incorporate the GHS. The new system is called WHMIS 2015.

Any WHMIS pictograms that appear on provincial assessments will be WHMIS 2015 pictograms.
Student-based Performance Standards

The Chemistry 30 Student-based Performance Standards provides examples of behaviours exhibited by students at the acceptable standard and at the standard of excellence for the course. It should be used in conjunction with the program of studies, as it is not intended to replace the program of studies. The Student-based Performance Standards document is available on the Alberta Education website.

Assessment Exemplars

The Chemistry 30 Exemplars have been developed to assist teachers with the interpretation of outcomes in the Chemistry 30 Program of Studies. The assessment exemplars have been updated in 2020 and the new document can be found on the Alberta Education website.

Released Items

Released Items contains sample items that have been previously used on Chemistry 30 Diploma Examinations. Released materials are available on the Alberta Education website.
Data Booklet

The most current version of the Chemistry 30 Data Booklet has a publication date of 2010. This version replaces previous versions, which have an earlier publication date. Permission is granted to Alberta educators to reproduce the data booklets for educational purposes and on a non-profit basis.

Ordering the Chemistry 30 Data Booklet

Print copies of the Chemistry 30 Data Booklet are available from Alberta Queen’s Printer. Search by title or keyword within the online catalogue. Visa, MasterCard, and American Express are accepted. Many schools will already have an account with Alberta Queen’s Printer and can use this account to make a purchase order. Shipping charges will apply and orders can be shipped collect or on account with designated couriers. For ordering assistance, use the Alberta Queen’s Printer Contact Us feature.

Using Calculators

The Chemistry 30 Diploma Examination requires the use of a calculator that does not have prohibited properties, or graphing calculator approved by Alberta Education. The calculator rules, list of prohibited properties, criteria, and keystrokes for clearing approved graphing calculators are found on the Alberta Education website.

Teachers should be aware of the capabilities of approved graphing calculators that are available when the calculator is not configured for exam purposes, as these capabilities may impact classroom instruction and assessment. These capabilities may also be applicable to other high school math and science courses.
Publications and Supporting Documents

The following documents are published by Alberta Education:

Chemistry 30 Information Bulletin, updated in August 2020

Chemistry 30 Exemplars, updated in August 2020

Chemistry 30 Student-based Performance Standards, published in 2013

Chemistry 30 Data Booklet, updated in 2010


Examples of Descriptions Used in Audio Versions of Science Diploma Exams, published in 2020
Website Links

Alberta Education website

Programs of Study

General Information Bulletin
contains specific directives, guidelines, and procedures of diploma examinations

Diploma Examinations Program

Writing Diploma Examinations
contains Guides for Students, exemplars, and other support documents

Quest A+
contains practice questions and questions from previous diploma examinations

Field Test Request System

Field-test Information

School Reports and Instructional Group Reports
contain detailed statistical information on provincial, group, and individual student performance on the entire examination
How to Get Involved

High-quality diploma examinations are the product of close collaboration between classroom teachers and Alberta Education. Classroom teachers from across Alberta are involved in many aspects of diploma examination development, including the development of items; the building, reviewing, administering, and marking of field tests; the reviewing and validating of diploma examinations; and the marking of diploma examinations.

The development of test items from when they are written until when they appear on an examination takes at least one year. All items on Chemistry 30 Diploma Examinations are written by Chemistry 30 teachers from across Alberta. After the first year of provincial implementation of the program of studies, items are field tested to ensure their reliability and validity. Diploma examinations are reviewed by editors; a technical advisory working group composed of science experts from post-secondary institutions, teachers, and curriculum staff; translators; and a French validation working group.

Alberta Education values the involvement of the teachers and annually asks school jurisdictions for the names of teachers who are interested in being involved in any of the development processes for diploma examinations. Teachers who are interested in developing items, constructing field tests, or reviewing and validating examinations are encouraged to talk to their principals about how they can submit their names for approval to be involved in these processes. Although the call for submissions occurs each fall, teachers are welcome to have their names submitted at any time.

Periodically, we may send out information to those Chemistry 30 teachers who are on our contact list. If you are not on that list and would like to receive updates related to Chemistry 30 assessment activities, please contact either Brenda Elder, Chemistry 30 Exam Manager, at Brenda.Elder@gov.ab.ca or Keir Jenkins, Chemistry 30 Examiner, at Keir.Jenkins@gov.ab.ca.
Contacts 2020–2021

Provincial Assessment Sector
Dan Karas, Executive Director
Provincial Assessment Sector
780-422-4848
Dan.Karas@gov.ab.ca

Diploma Programs
Deanna Shostak, Director
Diploma Programs
780-422-5160
Deanna.Shostak@gov.ab.ca

French Assessment
Nicole Lamarre, Director
French Assessment
780-422-3535
Nicole.Lamarre@gov.ab.ca

Exam Managers
Gary Hoogers
English Language Arts 30–1
780-422-5213
Gary.Hoogers@gov.ab.ca

Philip Taranger
English Language Arts 30–2
780-422-4478
Philip.Taranger@gov.ab.ca

Peyman Mirmiran
Français 30–1, French Language Arts 30–1
780-422-5140
Peyman.Mirmiran@gov.ab.ca

Dwayne Girard
Social Studies 30–1
780-422-5161
Dwayne.Girard@gov.ab.ca

Nathalie Langstaedtler
Social Studies 30–2
780-422-4631
Nathalie.Langstaedtler@gov.ab.ca

Shannon Mitchell
Biology 30
780-415-6122
Shannon.Mitchell@gov.ab.ca

Brenda Elder
Chemistry 30
780-427-1573
Brenda.Elder@gov.ab.ca

Delcy Rolheiser
Mathematics 30–1
780-415-6181
Delcy.Rolheiser@gov.ab.ca

Jenny Kim
Mathematics 30–2
780-415-6127
Jenny.Kim@gov.ab.ca

Laura Pankratz
Physics 30
780-427-6196
Laura.Pankratz@gov.ab.ca

Stan Bissell
Science 30
780-422-5730
Stan.Bissell@gov.ab.ca

Exam Administration
Pascal Couture, Director
Exam Administration
780-643-9157
Pascal.Couture@gov.ab.ca

Pamela Klebanov, Senior Manager
Business Operations and Special Cases
780-427-1912
Pamela.Klebanov@gov.ab.ca

Amy Wu, Coordinator
Business Coordinator (Field Testing, GED and Special Cases and Accommodations)
780-415-9242
Amy.Wu@gov.ab.ca

Inquiries about special cases, diploma examination accommodations, and special-format materials can be sent by email to special.cases@gov.ab.ca

Inquiries about field testing can be sent by email to field.test@gov.ab.ca

Provincial Assessment Sector
mailing address
Provincial Assessment Sector, Alberta Education
44 Capital Boulevard
10044 108 Street NW
Edmonton AB T5J 5E6
Telephone: 780-427-0010
Toll-free within Alberta: 310-0000
Fax: 780-422-4200
Alberta Education website: alberta.ca/education