This document was written primarily for:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td></td>
</tr>
<tr>
<td>Teachers</td>
<td>✓</td>
</tr>
<tr>
<td>Administrators</td>
<td>✓</td>
</tr>
<tr>
<td>Parents</td>
<td></td>
</tr>
<tr>
<td>General Audience</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
</tbody>
</table>

Alberta Education, Government of Alberta

2019–2020

Mathematics 9 Subject Bulletin

Distribution: This document is posted on the [Alberta Education website](https://www.alberta.ca/). Copyright 2019, the Crown in Right of Alberta, as represented by the Minister of Education, Alberta Education, Provincial Assessment Sector, 44 Capital Boulevard, 10044 108 Street NW, Edmonton, Alberta T5J 5E6, and its licensors. All rights reserved.

Special permission is granted to Alberta educators only to reproduce this document for educational purposes and on a non-profit basis.
You can find provincial achievement test-related materials on the Alberta Education website.

Additional topics of interest are found in the General Information Bulletin.
Grade 9 Mathematics Provincial Achievement Test

General description

The Grade 9 Mathematics Provincial Achievement Test consists of two parts:

- **Part A** contains 20 numerical-response questions and assesses students’ foundational skills and fluency in mental math, estimation, algebra, square roots, exponent laws, and arithmetic operations on rational numbers without the use of calculators. Examples of these questions are provided in Appendix 3.

- **Part B** contains 32 multiple-choice questions and 8 numerical-response questions and assesses students’ ability to recall concepts and principles and to apply reasoning skills to solve problems. Examples of these questions are provided in Appendix 4.

Questions are categorized according to three levels of complexity: low, moderate, and high. (See Appendix 1 for a more detailed explanation of each complexity level.)

A dictionary, a thesaurus, or other reference materials are **not** permitted when writing the test.

Question format

The following bullets briefly describe the two question formats:

- Multiple-choice questions provide students with four response options, of which only one is correct.

- Numerical-response questions require students to generate a response (in symbolic form) to a particular problem, rather than selecting a response from a list of four options.

Test administration

Students can take a break between the writing of parts A and B. Students may also write the parts in any order and on separate days according to the schedule set by the school authority.

Part A is designed to be completed in 30 minutes; however, each student may have up to 60 minutes to complete this part, should they need it.

Part B is designed to be completed in 80 minutes; however, each student may have up to 160 minutes to complete this part, should they need it.
Description of Grade 9 Mathematics provincial assessment standards

The following statements describe what is expected of Grade 9 students at the acceptable standard and the standard of excellence based on outcomes in the Grade 9 Mathematics Program of Studies. These statements represent examples of the standards against which student achievement is measured. It is important to remember that one test cannot measure all the outcomes in the program of studies.

<table>
<thead>
<tr>
<th>Acceptable standard</th>
<th>Standard of excellence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students who meet the acceptable standard in Grade 9 Mathematics are typically able to</td>
<td>Students who meet the standard of excellence in Grade 9 Mathematics are typically able to</td>
</tr>
<tr>
<td>• recall and apply a moderate number of mathematical properties to solve routine problems</td>
<td>• recall and apply a variety of mathematical properties to solve novel problems</td>
</tr>
<tr>
<td>• use familiar problem-solving strategies to solve routine problems</td>
<td>• use a variety of problem-solving strategies to solve novel problems</td>
</tr>
<tr>
<td>• connect and apply personal experiences and problem-solving strategies to solve routine problems</td>
<td>• connect and apply personal experiences and strategies to check and verify solutions to novel problems</td>
</tr>
<tr>
<td>• recall and apply mathematical concepts and operational terms to solve routine problems</td>
<td>• apply abstract-thinking skills to reframe mathematical concepts to solve novel problems</td>
</tr>
<tr>
<td>• apply computation skills and formal mathematics vocabularies to solve routine problems</td>
<td>• generate linguistic and non-linguistic representations of knowledge to solve novel problems</td>
</tr>
<tr>
<td>• recognize and describe numerical and non-numerical patterns</td>
<td>• demonstrate fluency in working with patterns represented concretely, pictorially, or symbolically</td>
</tr>
<tr>
<td>• use semantic knowledge to construct correct mental representations of word problems</td>
<td>• use semantic knowledge to construct and reframe correct mental representations of word problems</td>
</tr>
<tr>
<td>• use logical processes to analyze and solve routine problems</td>
<td>• use logical processes to analyze complex problems, reach conclusions, and justify or defend conclusions</td>
</tr>
<tr>
<td>• recognize and use mathematical patterns to make predictions when solving routine problems</td>
<td>• recognize, extend, create, and use mathematical patterns to make and justify predictions when solving novel problems</td>
</tr>
<tr>
<td>• test generalizations from patterns to reach conclusions</td>
<td>• make generalizations from patterns to reach conclusions</td>
</tr>
</tbody>
</table>
*NEW Use of calculators and manipulatives

Part A: Manipulatives may be used, but use of a calculator is not permitted.

Part B: Students may use calculators and manipulatives; however, use of graphing calculators is not permitted. Please refer to the General Information Bulletin for further information on using calculators. Use of a protractor is also not permitted.

An acceptable manipulative is any mathematical tool that can be used by a student to help convert abstract ideas into concrete representations for the purpose of solving a problem (e.g., a ruler, tracing paper, pattern blocks, tiles and cubes, geoboards, tangrams, counters, spinners, number lines). The manipulative cannot perform the mental conversion or provide the solution to a problem. A multiplication table is not an acceptable manipulative for use in completing Part A (except as an accommodation) or Part B.

Scoring and reporting

Marking keys will be provided to teachers for marking purposes. Teachers are expected to record and report the raw scores achieved on the test by their students to parents. Raw scores achieved by students on Part A and Part B are to be reported separately to parents and are not to be combined into a total test score.
Blueprints

<table>
<thead>
<tr>
<th>Test Component</th>
<th>Number of Questions</th>
<th>Question Format</th>
<th>Weighting on Total Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part A</td>
<td>20</td>
<td>Numerical Response</td>
<td>20%</td>
</tr>
<tr>
<td>Part B</td>
<td>32 8</td>
<td>Multiple Choice Numerical Response</td>
<td>80%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content Domain of Test (Strand)</th>
<th>Part A: Percentage of Questions</th>
<th>Part B: Percentage of Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>70–80%</td>
<td>25–35%</td>
</tr>
<tr>
<td>Patterns and Relations</td>
<td>20–30%</td>
<td>35–45%</td>
</tr>
<tr>
<td>Shape and Space</td>
<td></td>
<td>20–30%</td>
</tr>
<tr>
<td>Statistics and Probability</td>
<td></td>
<td>5–10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cognitive Domain of Test (Complexity Level)</th>
<th>Part A: Percentage of Questions</th>
<th>Part B: Percentage of Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>80–90%</td>
<td>30–40%</td>
</tr>
<tr>
<td>Moderate</td>
<td>10–20%</td>
<td>45–55%</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>10–20%</td>
</tr>
</tbody>
</table>
Preparing Students for the
Grade 9 Mathematics Provincial
Achievement Test

Suggestions for preparing students

The best way to prepare students for writing the provincial achievement test is to teach the Mathematics Program of Studies well and to ensure that students know what is expected. Many of the skills and attitudes that support test writing are, in fact, good skills and strategies for approaching all kinds of learning tasks.

Note that most of the questions on the mathematics test are placed in real-life contexts.

Teachers are encouraged to familiarize their students with the types of questions that will appear on the test. Released materials from previously secured tests are available on the Alberta Education website.

Teachers are also encouraged to share the following information with their students to help them prepare for the Grade 9 Mathematics Provincial Achievement Test.

Special-format practice tests

To give students an opportunity to practise provincial achievement test-style questions and content in Braille, audio, large print, or coloured print versions, Alberta Education produces special-format practice tests for all subjects that have a provincial achievement test. Alberta schools with registered Alberta K–12 students may place orders for these tests. Braille versions are available in English and, by request, in French. All tests are provided free of charge, but limits may be placed on order volumes to ensure access for all students.

For the greatest benefit, special-format practice tests should be written under conditions similar to those of the corresponding provincial achievement test. The same rules regarding the use of resources and devices should be followed.

Braille versions must be returned to Alberta Education after use.

For more information or to place an order, contact

Laura LaFramboise
Distribution Coordinator, Examination Administration
780-641-9116 or Laura.LaFramboise@gov.ab.ca
Suggestions for answering questions

• Before you begin, find out how much time you have.

• Ask questions if you are unsure of anything.

• Skim through the whole test before beginning. Find out how many questions there are, and plan your time accordingly.

• Answer the easier questions first; then go back to the more difficult ones.

• Do not spend too much time on any one question. Make a mark (✓ or ?) beside any questions you have difficulty with, and go back to them if you have time.

• Read each question carefully, underline or highlight key words, and try to determine an answer before looking at the choices.

• Read all the choices and see which one best fits the answer.

• When you are not sure which answer is correct, cross out any choices that are wrong and then select the best of the remaining choices.

• If time permits, recheck your answers.

• Double-check to make sure that you have answered everything before handing in the test.

• Read the information given using the strategy that works best for you. You should either
 – look at all the information and think carefully about it before you try to answer the question
 OR
 – read the questions first and then look at the information, keeping in mind the questions you need to answer

• Make sure that you look at all forms of the information given. Information may be given in words, charts, pictures, graphs, or maps.

• When information is given for more than one question, go back to the information before answering each question.

• Check your work when you calculate an answer, even when your answer is one of the choices.

• When answering “best answer” questions, be sure to carefully read all four alternatives (A, B, C, and D) before choosing the answer that you think is best. These questions will always include a boldfaced qualifier such as best, most strongly, or most clearly in their stems. All the alternatives (A, B, C, and D) are, to some degree, correct, but one of the alternatives will be “best” in that it takes more of the information into account or can be supported most strongly by reference to the information.
Opportunities to Participate in Test-development Activities

Field testing

All provincial achievement test questions are field tested before use. By “testing” the test questions, students who write field tests have an opportunity for a practice run at answering questions that could be used on future provincial achievement tests. As well, the teachers have an opportunity to comment on the appropriateness and quality of the test questions.

Through the online field-test request system, teachers can create and modify field-test requests and check the status of these requests. Information regarding the field-test process and the request system is available at Provincial Achievement Tests.

Once the completed requests are received by the Provincial Assessment Sector, classes will be selected to ensure that a representative and sufficiently large sample of students from across the province take part in the field test. Every effort will be made to place field tests as requested; however, because field tests are administered to a prescribed number of students, it may not be possible to fill all requests.

NEW Working groups

Teacher involvement in the development of provincial achievement tests is important because it helps to ensure the validity and appropriateness of the assessments.

Teacher working groups are used throughout the test-development process to create raw forms of test questions and to review and revise draft forms of provincial achievement tests. These working groups usually meet for one or two days, two or three times per year. Occasionally, these meetings are held on weekends.

To be eligible to serve on a test-development working group, a teacher must currently be teaching the course in question or must have taught the course within the past three years.

Teachers participating in working groups are selected from the working-group nominees approved by superintendents of school jurisdictions. The call for nominations usually occurs in September. However, we will accept further nominations throughout the year. In some subjects, more teachers may be nominated for working groups than are needed. When teachers are selected, there must be a balance of first-time and experienced working-group members and regional representation by zone, school authority, and school. Unfortunately, not everyone whose name is submitted will be selected.
Appendix 1

<table>
<thead>
<tr>
<th>Levels of Item Complexity</th>
<th>Low Complexity</th>
<th>Moderate Complexity</th>
<th>High Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Items in this category require students to rely heavily on recalling and recognizing previously learned concepts and principles. Items typically specify what students are to do, which is often to carry out some procedure that can be performed mechanically. Students would not be expected to come up with original methods for finding a particular solution. The list on the following page illustrates some of the demands that items of low complexity may make of students.</td>
<td>Items in this category involve more flexibility of thinking and choice among alternatives than those in the low-complexity category. Moderate-complexity items require a response that goes beyond the habitual, is not specified, and may require more than a single step. The student is expected to decide what to do, using informal methods of reasoning and problem-solving strategies, and to bring together skills and knowledge from various domains. The list on the following page illustrates some of the demands that items of moderate complexity may make of students.</td>
<td>Items in this category make heavy demands on students by requiring them to engage in more-abstract reasoning, planning, analysis, judgment, and creative thought. The list on the following page illustrates some of the demands that items of high complexity may make of students.</td>
</tr>
</tbody>
</table>

Levels of Item Complexity

<table>
<thead>
<tr>
<th>Low Complexity</th>
<th>Moderate Complexity</th>
<th>High Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Recall or recognize a fact, term, or property.</td>
<td>• Solve a word problem requiring multiple steps.</td>
<td>• Perform a procedure having multiple steps and multiple decision points.</td>
</tr>
<tr>
<td>• Recognize an example of a concept.</td>
<td>• Compare figures or statements.</td>
<td>• Analyze similarities and differences between procedures and concepts.</td>
</tr>
<tr>
<td>• Perform a specified procedure.</td>
<td>• Provide a justification for steps in a solution process.</td>
<td>• Formulate an original problem, given a situation.</td>
</tr>
<tr>
<td>• Evaluate an expression in an equation or a formula for a single variable.</td>
<td>• Interpret a visual representation.</td>
<td>• Solve a problem in more than one way.</td>
</tr>
<tr>
<td>• Solve a one-step word problem.</td>
<td>• Retrieve information from a graph, table, or figure and use it to solve a problem requiring multiple steps.</td>
<td>• Explain and justify a solution to a problem.</td>
</tr>
<tr>
<td>• Draw or measure simple 2-D shapes or 3-D objects.</td>
<td>• Interpret a simple argument.</td>
<td>• Describe, compare, and contrast solution methods.</td>
</tr>
<tr>
<td>• Retrieve information from a graph, table, or figure.</td>
<td>• Generalize a pattern.</td>
<td>• Formulate a mathematical model for a complex situation.</td>
</tr>
</tbody>
</table>

Appendix 2

Grade 9 Mathematics formula sheet

Grade 9 Mathematics Formula Sheet

The following information may be useful in writing this test.

Area (A)

- **Circle** \(A = \pi r^2 \)
- **Rectangle** \(A = lw \)
- **Triangle** \(A = \frac{bh}{2} \)

Volume (V)

- **Right Cylinder** \(V = \pi r^2 h \)
- **Prism** \(V = \text{(Base Area)}(h) \)

Circumference (C)

- **Circle** \(C = \pi d \; \text{or} \; 2\pi r \)

Pythagorean Theorem

\[c^2 = a^2 + b^2 \] where \(c \) is the hypotenuse

![Pythagorean Theorem Diagram](image_url)
Grade 9 Provincial Achievement Test

Mathematics
Part A

Description

• This test consists of 20 numerical-response questions, each worth one mark.

Time: 30 minutes. You have up to 60 minutes to complete this test should you need it.

Instructions

• Turn to the last page of the test booklet. Carefully fold and tear out the machine-scored answer sheet along the perforation.
• Use only an HB pencil to mark your answer.
• You may use manipulatives; however, use of a calculator is not permitted.
• You may not use a dictionary, a thesaurus, or other reference materials.
• Try to answer every question.
• If you change an answer, erase your first mark or marks completely.
• When you have completed the test, please answer the survey question, which appears after the last test question.

You may write in this booklet if you find it helpful. Make sure that your answers are placed on the answer sheet.

2020

Numerical Response

• Record your answer on the answer sheet provided by writing it in the boxes and then by filling in the corresponding circles.

• Enter your answer, with one digit per box, beginning in the left-hand box. Each of the following, if needed, goes in its own box: a decimal point (.), a fraction bar (/), and a negative sign (–). Do not include a plus sign (+) if the answer is positive. Leave any unused boxes blank.

• You may fill in the circles below the boxes for each of your answers as you do the test; however, you may also fill in the circles after you have completed this test and your teacher has collected your test booklet.

Example 1

Answer: –4

Record –4 on the answer sheet

You may write in this booklet if you find it helpful. Make sure that your answers are placed on the answer sheet.
Example 2
Answer: 9.2

Record 9.2 on the answer sheet

Fill in the corresponding circles

Example 3
Answer: −0.3

Record −0.3 on the answer sheet

Fill in the corresponding circles

Example 4
Answer:

(Record the numerator in the first column.)
(Record the fraction bar in the second column.)
(Record the denominator in the third and fourth columns.)

Record 9/20 on the answer sheet

Fill in the corresponding circles

Example 5
Answer:

(Record the negative sign in the first column.)
(Record the numerator in the second column.)
(Record the denominator in the third and fourth columns.)

Record −3/5 on the answer sheet

Fill in the corresponding circles
Example 6

Answer:
(Record the whole number in the first column.)
8
(Record the numerator in the second column.)
1
(Record the fraction bar in the third column.)
2
(Record the denominator in the fourth column.)

Example 7

78.5 – 24.2 = 5_.3

In the equation above, which digit could be placed in the blank space to make the equation correct?

Answer: 5_.3

(Record only the missing digit on the answer sheet.)

Answer: 54.3

Example 8

786.5 – 244.2 = 5___.3

In the equation above, which two digits could be placed in the blank spaces to make the equation correct?

Answer: 5___.3

(Record only the two missing digits, in order, on the answer sheet.)

Answer: 542.3
Part A: Sample questions

1. What is \((5^2 - 3^3)^2\)?

Answer: __________

(Record your answer as an integer value on the answer sheet.)

2. Evaluate \((-1)^2 - (-1)^3 - 1^4\).

Answer: __________

(Record your answer as an integer value on the answer sheet.)

3. What is the value of \(\frac{(-3)^2 \times (-3)^3 \times (-3)^4}{(-3)^6}\)?

Answer: __________

(Record your answer as an integer value on the answer sheet.)

4. What is the value of \(\frac{1}{5} + 0.2 \times \frac{2}{3}\) expressed as a fraction in simplest form?

Answer:

(Record the numerator in the first column)
(Record the fraction bar in the second column)
(Record the denominator in the third column)

(Record your answer on the answer sheet.)

5. What is the value of \(\frac{25}{75} \times \frac{16}{24} \div \frac{8}{27}\) expressed as a fraction in simplest form?

Answer:

(Record the numerator in the first column)
(Record the fraction bar in the second column)
(Record the denominator in the third column)

(Record your answer on the answer sheet.)
6. What is the value of $\frac{1}{8} + 0.25 + 0.5$ expressed as a fraction in simplest form?

\[\text{Answer: } \frac{\square}{\square} \]
(Record the numerator in the first column)
(Record the fraction bar in the second column)
(Record the denominator in the third column)

(Record your answer on the answer sheet.)

7. Given $(4 \times 5)^7 = 4 \times 5^7$, what is the value of \square?

\[\text{Answer: } \square = \square \]
(Record your answer as an integer value on the answer sheet.)

8. In simplest form, what is the value of $\left(3.25 + \frac{3}{4}\right) \div 0.25$?

\[\text{Answer: } \square \]
(Record your answer as an integer value on the answer sheet.)

9. Solve $\frac{3}{x} = 0.5$.

\[\text{Answer: } x = \square \]
(Record your answer as an integer value on the answer sheet.)

10. Solve for x in the following equation.

\[2.6 + x = 4x + 1.4.\]

Express your answer to the nearest tenth.

\[\text{Answer: } x = \square \]
(Record your answer as a decimal value on the answer sheet.)
11. Solve for x in the following equation.

$$-2(3x - 4) = 2(x + 6).$$

Express your answer to the nearest tenth.

Answer: $x = _________$

(Record your answer as a **decimal** value on the answer sheet.)

12. Solve for x in the equation $6\left(\frac{5}{6}x - \frac{2}{3}\right) = -9$.

Answer: $x = _________$

(Record your answer as an **integer** value on the answer sheet.)

13. Evaluate the expression $-4(7 - 2x)$, where $x = -1$.

Answer: _________

(Record your answer as an **integer** value on the answer sheet.)

14. What is the approximate square root of $\sqrt{\frac{145}{4}}$ to the nearest whole number?

Answer: _________

(Record your answer on the answer sheet.)

15. How many integers are between $-\frac{17}{4}$ and $\sqrt{40}$?

Answer: _________ integers

(Record your answer on the answer sheet.)
16. Order the following rational numbers from smallest value to greatest value, using the numbers 1, 2, 3, and 4.

Use the number 1 to represent the smallest value and the number 4 to represent the greatest value.

Answer: \(-0.75, \frac{-3}{5}, -0.\overline{6}, -\frac{-5}{2}\)

(Record all four digits of your answer on the answer sheet.)

17. What is the value of \(0.4 \div 2 + \sqrt{\frac{9}{36} \times 1\frac{1}{5}}\) expressed as a fraction in simplest form?

Answer: \(
\begin{array}{ccc}
\text{(Record the numerator in the first column)} \\
\text{(Record the fraction bar in the second column)} \\
\text{(Record the denominator in the third column)} \\
\end{array}
\)

(Record your answer on the answer sheet.)

Use the following information to answer question 18.

18. Solve the inequality \(10 - 2x \geq -4\).

Answer: \(x\)

<table>
<thead>
<tr>
<th>Symbol 1</th>
<th>Symbol 2</th>
<th>Symbol 3</th>
<th>Symbol 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq)</td>
<td>(\leq)</td>
<td>(<)</td>
<td>(>)</td>
</tr>
</tbody>
</table>

(Record both digits of your answer on the answer sheet.)
19. Which points best represent an approximate value for \(\sqrt{17} \), \(\sqrt{23} \), and \(\sqrt{27} \)?

Answer:

<table>
<thead>
<tr>
<th>Number</th>
<th>Point:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{17})</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{23})</td>
<td></td>
</tr>
<tr>
<td>(\sqrt{27})</td>
<td></td>
</tr>
</tbody>
</table>

(Record all three digits of your answer on the answer sheet.)

20. How many of the points labelled with a letter on the number line above satisfy the inequality?

Answer: ________ points

(Record your answer on the answer sheet.)
Part A: Sample answer sheet—key
Appendix 4

*NEW Part B: Instructions pages

Copyright 2020, the Crown in Right of Alberta, as represented by the Minister of Education, Alberta Education, Provincial Assessment Sector, 44 Capital Boulevard, 10044 108 Street NW, Edmonton, Alberta T5J 5E6, and its licensors. All rights reserved.

Duplication of this test in any manner or its use for purposes other than those authorized and scheduled by Alberta Education is strictly prohibited.

Grade 9 Provincial Achievement Test
Mathematics
Part B

Description

• This test consists of 40 machine-scored questions: 32 multiple-choice questions, each worth one mark, and 8 numerical-response questions, each worth one mark.

Time: 80 minutes. You have up to 160 minutes to complete this test should you need it.

Instructions

• Turn to the last two pages of the test booklet. Carefully fold and tear out the formula sheet and the machine-scored answer sheet along the perforations.

• Use only an HB pencil to mark your answer.

• You may use a ruler, manipulatives, and a calculator; however, a graphing calculator is not permitted. Use of a protractor is also not permitted.

• You may not use a dictionary, a thesaurus, or other reference materials.

• Read each question carefully and choose the correct or best answer.

• Try to answer every question.

• If you change an answer, erase your first mark completely.

• When you have completed the test, please answer the survey question, which appears after the last test question.

• Now read the detailed instructions for answering multiple-choice and numerical-response questions.

You may write in this booklet if you find it helpful. Make sure that your answers are placed on the answer sheet.

2020
Multiple Choice

- Each question has four possible answers from which you are to choose the correct or best answer.

- Locate the question number on the separate answer sheet provided and fill in the circle that corresponds to your choice.

Example

If \(x = 3 \), what is the value of \(x + 8 \)?

A. 10
B. 11
C. 12
D. 13

Answer: 11

Numerical Response

- Record your answer on the answer sheet provided by writing it in the boxes and then by filling in the corresponding circles.

- Enter your answer, one digit per box, beginning in the left-hand box. A decimal point, if needed, goes in its own box. Leave any unused boxes blank.

Calculation Question and Solution

Example 1

What is \(5 - 1 \)?

Answer: 4

Example 2

If \(x = 4.6 \), then what does \(2x \) equal?

Answer: 9.2
Example 3

What is $5.4 - 5.1$?

Answer: 0.3

Record 0.3 on the answer sheet.

Example 4

What is 7.5×3?

Answer: 22.5

Record 22.5 on the answer sheet.

Matching Question and Solution

Example

The following pictures are of 2-D shapes.

Match each shape, as numbered above, with its name, as given below.

<table>
<thead>
<tr>
<th>Number</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Triangle</td>
</tr>
<tr>
<td>2</td>
<td>Pentagon</td>
</tr>
<tr>
<td>3</td>
<td>Circle</td>
</tr>
<tr>
<td>4</td>
<td>Quadrilateral</td>
</tr>
</tbody>
</table>

(Record all four digits of your answer in the numerical-response section on the answer sheet.)

Answer: 2431
Part B: Sample questions

Low complexity

Use the following information to answer question 1.

According to a weather forecast for a particular city on a given day, the probability of precipitation is 20%.

1. Based on this forecast, a reasonable prediction can be made that in the city
 A. the rainfall will be very light
 B. it will rain on 2 of the next 10 days
 C. 20% of the area will have rain on that day
 D. it is more likely to be dry than wet on that day

Moderate complexity

Use the following information to answer question 2.

The table shown below lists the cost of renting a rock-climbing gym for different numbers of people.

<table>
<thead>
<tr>
<th>Number of People (n)</th>
<th>Cost (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$55.00</td>
</tr>
<tr>
<td>4</td>
<td>$64.50</td>
</tr>
<tr>
<td>6</td>
<td>$74.00</td>
</tr>
<tr>
<td>8</td>
<td>$83.50</td>
</tr>
</tbody>
</table>

2. Which of the following equations could be used to calculate the cost, c, to rent the rock-climbing gym for any number of people, n?
 A. \(c = 45.50 + 4.75n \)
 B. \(c = 45.50n + 4.75 \)
 C. \(c = 45.50 + 9.5n \)
 D. \(c = 45.50n + 9.5 \)
Moderate complexity

Use the following information to answer numerical-response question 1.

The diagram shown below is a scale drawing of an inukshuk. It is drawn with a scale factor of \(\frac{1}{25} \).

Numerical Response

1. The height of the actual inukshuk is \(\text{__________} \) cm.

(Record your answer in the numerical-response section on the answer sheet.)
High complexity

Use the following information to answer numerical-response question 2.

A basketball coach orders enough pizza for 24 players. He determines that \(\frac{1}{4} \) of the players will each eat 3 slices of pizza, \(\frac{2}{3} \) of the players will each eat 2 slices of pizza, and the remaining players will each eat 1 slice of pizza.

<table>
<thead>
<tr>
<th>Pizza Size</th>
<th>Number of Slices</th>
<th>Price Including GST ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>12</td>
<td>15.00</td>
</tr>
</tbody>
</table>

Numerical Response

2. What is the total cost of the order?

Answer: $\underline{}$.00

(Record your answer in the numerical-response section on the answer sheet.)
Fold and tear along perforation.

Part B

Grade 9 Mathematics Provincial Achievement Test

IMPORTANT INSTRUCTIONS FOR MARKING ANSWERS

MARKING ANSWERS

1. USE HB PENCIL ONLY.
2. MAKE HEAVY BLACK MARKS TO FILL CIRCLE COMPLETELY.
3. TO CHANGE AN ANSWER, ERASE THE OLD MARK CLEANLY BEFORE FILLING IN THE NEW CIRCLE.
4. DO NOT MAKE ANY STRAY MARKS ON THIS PAPER.

EXAMPLE

 Alberta is a
A. territory
B. county
C. province
D. state

1. Click here to access Accreditations.

EXAMPLE

What is 5.4 – 5.1?
Answer:
0.3

To be completed by/for ALL students.

Apply label with student’s name.

Grade 9 Mathematics
Alberta Education, Provincial Assessment Sector

Part B: Sample answer sheet—blank
NEW *Part B: Sample answer sheet—key*

GRADE 9 MATHEMATICS

Part B

NUMERICAL RESPONSE

1. 187.5
2. 275
3. 3
4. 4
5. 5
6. 6
7. 7
8. 8

MULTIPLE CHOICE

1. 12
2. 22
3. 32
4. 42
5. 52
6. 62
7. 72
8. 82
9. 92
10. 102
11. 112
12. 122
13. 132
14. 142
15. 152
16. 162
17. 172
18. 182
19. 192
20. 202
21. 212
22. 222

Time Taken:

Day:

January
May
June

Fold and tear along perforation.
Contacts 2019–2020

Provincial Assessment Sector

Dan Karas, Executive Director
Provincial Assessment Sector
780-422-4848
Dan.Karas@gov.ab.ca

Grade 3, 6, and 9 Provincial Assessment

Nicole Lamarre, Director
Student Learning Assessments and Provincial Achievement Testing
780-427-6204
Nicole.Lamarre@gov.ab.ca

Gilbert Guimont, Director
French Assessment
780-422-3535
Gilbert.Guimont@gov.ab.ca

Senior Managers

Julia Lee-Schuppli
Gr. 3 English Language/Literacy
780-422-3338
Julia.LeeSchuppli@gov.ab.ca

Renate Taylor Majeau
Gr. 3 Numeracy (English and French)
780-422-2656
Renate.TaylorMajeau@gov.ab.ca

Peggy Lee Peters
Gr. 3 Francophone and French Immersion Literacy
780-422-5464
Peggy.Lee.Peters@gov.ab.ca

Robyn Pederson
Gr. 6 English Language Arts and Social Studies
780-415-2023
Robyn.Pederson@gov.ab.ca

Denis Dinel
Gr. 6 and 9 Français/French Language Arts
780-422-9424
Denis.Dinel@gov.ab.ca

Vanessa Tran
Gr. 6 and 9 Mathematics
780-422-1114
Vanessa.Tran@gov.ab.ca

Kelty Findlay
Gr. 6 and 9 Science
780-415-6120
Kelty.Findlay@gov.ab.ca

Harvey Stables
Gr. 9 English Language Arts and Social Studies
780-422-2913
Harvey.Stables@gov.ab.ca

Ray Shapka
Knowledge & Employability (K&E)
780-422-2786
Ray.Shapka@gov.ab.ca

Exam Administration

Pascal Couture, Director
Exam Administration
780-643-9157
Pascal.Couture@gov.ab.ca

Pamela Klebanov, Senior Manager
Business Operations and Special Cases
780-427-1912
Pamela.Klebanov@gov.ab.ca

Amy Wu, Coordinator
Business Coordinator (Field Testing, GED and Special Cases and Accommodations)
780-415-9242
Amy.Wu@gov.ab.ca

Inquiries about special cases, provincial achievement test accommodations, and special-format materials can be sent by email to special.cases@gov.ab.ca

Inquiries about field testing can be sent by email to field.test@gov.ab.ca

Provincial Assessment Sector
mailing address
Provincial Assessment Sector, Alberta Education
44 Capital Boulevard
10044 108 Street NW
Edmonton AB T5J 5E6
Telephone: 780-427-0010
Toll-free within Alberta: 310-0000
Fax: 780-422-4200
Alberta Education website: education.alberta.ca

Workforce Development Help Desk
Telephone: 780-427-5318
Toll-free within Alberta: 310-0000
Email: WFDhelpdesk@gov.ab.ca
Office hours: Monday through Friday, 8:15 a.m. to 4:30 p.m. The office is open during the lunch hour.