Grade 9

Assessment Highlights Mathematics

Alberta Provincial Achievement Testing 2018-2019

Albertan

This document was written primarily for:

Students		
Teachers	\checkmark	Grade 9 Mathematics
Administrators	\checkmark	
Parents		
General Audience		
Others		

Alberta Education, Government of Alberta
2018-2019

Mathematics 9 Assessment Highlights

Distribution: This document is posted on the Alberta Education website.
Copyright 2019, the Crown in Right of Alberta, as represented by the Minister of Education, Alberta Education, Provincial Assessment Sector, 44 Capital Boulevard, 10044108 Street NW, Edmonton, Alberta T5J 5E6, and its licensors. All rights reserved.

Special permission is granted to Alberta educators only to reproduce this document for educational purposes and on a non-profit basis.

Contents

The 2019 Grade 9 Mathematics Provincial Achievement Test 1
2019 Test Blueprint and Student Achievement 3
Part A Test Blueprint 3
Part B Test Blueprint 4
Sample Questions from the 2019 Grade 9 Mathematics Provincial Achievement Test - Part A 5
Sample Questions from the 2019 Grade 9 Mathematics Provincial Achievement Test - Part B 27
Provincial Achievement Testing Program Support Documents 40

You can find provincial achievement test-related materials on the Alberta Education website.
Additional topics of interest are found in the General Information Bulletin.

This document contains assessment highlights from the 2019 Grade 9 Mathematics Provincial Achievement Test.

Assessment Highlights provides information about the overall test, the test blueprint, and student performance on the provincial achievement test that was administered in 2019. Also provided is information on student performance at the acceptable standard and the standard of excellence on selected items from the 2019 Grade 9 Mathematics Provincial Achievement Test. This information is intended for teachers and is best used in conjunction with multi-year and detailed school reports that are available to schools via the Stakeholder File Exchange (SFX). Assessment Highlights for all provincial achievement test subjects and grades are posted on the Alberta Education website every year in the fall.

The examination statistics that are included in this document represent both French and English writers. If you would like to obtain English-only statistics or French-only statistics that apply to your school, please refer to your detailed reports, which are available on the Stakeholder File Exchange (SFX).

Provincial Assessment Sector

Telephone: 780-427-0010
Toll-free within Alberta: 310-0000

For further information, contact

Vanessa Tran

Grade 6 \& 9 Mathematics Assessment Specialist
Vanessa.Tran@gov.ab.ca
Dona Kutryk
Grade 6 \& 9 Mathematics Examiner
Dona.Kutryk@gov.ab.ca

Nicole Lamarre, Director

Student Learning Assessments and Provincial Achievement Testing Nicole.Lamarre@gov.ab.ca

The 2019 Grade 9 Mathematics Provincial Achievement Test

This report provides teachers, school administrators, and the public with an overview of the performance of those students who wrote the 2019 Grade 9 Mathematics Provincial Achievement Test. It complements the detailed school and jurisdiction reports.

How many students wrote the test?

A total of 41612 students in Alberta wrote the 2019 Grade 9 Mathematics Provincial Achievement Test.

What was the test like?

The 2019 Grade 9 Mathematics Provincial Achievement Test consisted of two parts: Part A and Part B.

Part A consisted of 20 numerical-response questions and represented 20% of the final overall test score. The test assessed students' foundational skills and fluency in mental math, estimation, algebra, square roots, exponent laws, and arithmetic operations on rational numbers without the use of calculators.

Part B consisted of 32 multiple-choice questions and 8 numerical-response questions and represented 80% of the final overall test score. The test assessed students' ability to recall concepts and principles and to apply reasoning skills to solve problems. The test required students to apply their understanding of one or more mathematical concepts from within and/or across the four strands: Number, Patterns and Relations, Shape and Space, and Statistics and Probability.

How well did students do?

The percentages of students meeting the acceptable standard and the standard of excellence in 2019 are shown in the graph below. The examination statistics that are included in this document represent both French and English writers. If you would like to obtain English-only or French-only statistics that apply to your school, please refer to the detailed reports that are available on the Stakeholder File Exchange (SFX).

Percentage of Students Meeting the Provincial Standards (French and English combined)

The percentage of students in the province who met the standard of excellence on the 2019 Grade 9 Mathematics Provincial Achievement Test (based on those who wrote)

The percentage of students in the province who met the acceptable standard on the 2019 Grade 9 Mathematics Provincial Achievement Test (based on those who wrote). Note: The percentage of students who met the acceptable standard includes the percentage of students who met the standard of excellence.

The percentage of students in the province who were below the acceptable standard on the 2019 Grade 9 Mathematics Provincial Achievement Test (based on those who wrote)

2019 Test Blueprint and Student Achievement

In 2019, 67.4\% of students who wrote the Grade 9 Mathematics Provincial Achievement Test achieved the acceptable standard, and 21.4% of students who wrote achieved the standard of excellence. There was a very strong positive correlation between student performance on Part A and performance on Part B. This suggests a strong relationship between routine algebraic operations and problem solving. Generally speaking, students who performed well on Part A also performed well on Part B, and vice versa.

The blueprints below show the reporting categories by which 2019 summary data are reported to schools and school authorities. The blueprints also show the provincial average of student achievement by both raw score and percentage.

Part A Test Blueprint

Content Reporting Category	Number (Percentage) of Questions	Provincial Student Achievement (Average Raw Score and Percentage)
Rational Numbers	7 (35\%)	$\begin{aligned} & 3.3 / 7 \\ & \text { (47.1\%) } \end{aligned}$
Powers and Exponent Laws	3 (15\%)	$\begin{aligned} & 1.6 / 3 \\ & \text { (53.3\%) } \end{aligned}$
Square Roots of Perfect and Non-perfect Squares	4 (20\%)	$\begin{aligned} & 2.2 / 4 \\ & \text { (55.0\%) } \end{aligned}$
Algebraic Expressions, Equations, and Inequalities	6 (30\%)	$\begin{aligned} & 2.5 / 6 \\ & \text { (41.7\%) } \end{aligned}$
Number (Percentage) of Questions	(100\%)	$\begin{aligned} & 9.8 / 20 \\ & (49.0 \%) \end{aligned}$

Part B Test Blueprint

Program of Study Strand	Low	Moderate	High	Provincial Student Achievement (Average Raw Score and Percentage)
	1	5	0	$3.4 / 6$ (56.7%)
Patterns and Relations	6	14	0	$12.0 / 20$ (60.0%)
Shape and Space	4	6	1	$6.9 / 11$ (62.7%)
Statistics and Probability	1	2	0	$2.3 / 3$ (76.7%)
Provincial Student Achievement (Average Raw Score and Percentage)	$7.7 / 12$			

*Each question is categorized according to its level of complexity (low, moderate, or high). Descriptions of the levels of complexity can be found in the 2019-2020 Mathematics 9 Subject Bulletin.

Sample Questions from the 2019 Grade 9 Mathematics Provincial Achievement Test-Part A

The following 11 items illustrate substantial performance differences between students who performed at the standard of excellence, those at the acceptable standard, and those below the acceptable standard.

Reporting Categories: Rational Numbers (RN); Powers and Exponent Laws (PE); Square Roots of Perfect and Non-perfect Squares (SR); Algebraic Expressions, Equations, and Inequalities (AE)

| | | \% of
 Students
 with
 Correct
 Solution | Number
 of Unique
 Errors | Content
 Reporting
 Category | Item Description |
| :--- | :--- | :--- | :--- | :--- | :--- | | 2 | 9 | 43.5 | 1900 | PE | Apply the exponent laws
 to evaluate an expression
 (Gr.9, N.1) |
| :--- | :--- | :--- | :--- | :--- | :--- |

Standard Achieved by Students on Part A	\% of Students with Correct Solution	Number of Unique Errors	Three Most Common Errors (Number of Students)		
Students Achieving Standard of Excellence $\text { (} n=9130 \text {) }$	85.4	136	$\begin{aligned} & 1 \\ & (426) \end{aligned}$	$\begin{aligned} & 3 \\ & (176) \end{aligned}$	$\begin{aligned} & 81 \\ & (168) \end{aligned}$
Students Achieving Acceptable Standard* $(n=12217)$	44.7	1004	$\begin{aligned} & 1 \\ & (1988) \end{aligned}$	$\begin{aligned} & 3 \\ & (1155) \end{aligned}$	$\begin{aligned} & 81 \\ & (1101) \end{aligned}$
Students Below Acceptable Standard ($n=20013$)	13.6	1452	$\begin{aligned} & 1 \\ & (849) \end{aligned}$	$\begin{aligned} & 3 \\ & (777) \end{aligned}$	$\begin{aligned} & 81 \\ & (425) \end{aligned}$

*Includes those students who achieved the acceptable standard but not the standard of excellence
2. Simplify, and then evaluate $\frac{\left(3^{2}\right)^{4}}{3(3)\left(3^{4}\right)}$.

Answer:

\qquad

Common correct response:

$$
\begin{aligned}
& \left(3^{2}\right)\left(3^{4}\right) \\
& \left(3^{6}\right) \\
& \frac{3^{8}}{3^{6}}=3^{2}=9
\end{aligned}
$$

Common incorrect responses:

2. Simplify, and then evaluate $\frac{\left(3^{2}\right)^{4}}{\frac{3(3)\left(3^{4}\right)}{3} \cdot 3^{8}}$

Answer:

$$
\begin{aligned}
& \frac{6561}{81} \\
& \frac{3^{n}}{9^{\prime \prime}\left(3^{4}\right)}= \\
& 81+41 \\
& 8 1 \longdiv { 6 5 6 1 } \\
& \text { Answer: } 81 \\
& \begin{array}{c}
3 \times 3 \times 3 \times 3 \\
9 \\
81
\end{array} \\
& 9 \times 9 \times 9 \times 9 \\
& 3 \times 3 \quad 41 \\
& 9 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \quad 81 \\
& 27 \times 3 \times 3 \times 3 \times 3 \times 3 \\
& 6480 \\
& \frac{5,65}{6561}
\end{aligned}
$$

Item	Key	\% of Students with Correct Solution	Number of Unique Errors	Content Reporting Category	Item Description
3	-1	61.7	342	AE	Solve a linear equation symbolically (Gr.9, PR.3)

Standard Achieved by Students on Part A	\% of Students with Correct Solution	Number of Unique Errors	Three Most Common Errors (Number of Students)		
Students Achieving Standard of Excellence $(n=9130)$	97.5	18	$\begin{aligned} & 1 \\ & (96) \end{aligned}$	$\begin{aligned} & -3 \\ & (24) \end{aligned}$	$\begin{aligned} & -0.5 \\ & (24) \end{aligned}$
Students Achieving Acceptable Standard* ($n=12$ 217)	72.6	127	$\begin{aligned} & 1 \\ & (1979) \end{aligned}$	$\begin{aligned} & 3 \\ & (522) \end{aligned}$	$\begin{aligned} & -2 \\ & (386) \end{aligned}$
Students Below Acceptable Standard $(n=20013)$	22.2	294	$\begin{aligned} & 1 \\ & (778) \end{aligned}$	$\begin{aligned} & 3 \\ & (1539) \end{aligned}$	$\begin{aligned} & 2 \\ & (1068) \end{aligned}$

*Includes those students who achieved the acceptable standard but not the standard of excellence
3. Solve for x in the following equation.

$$
x+1=2 x+2
$$

Answer: $x=$ \qquad

Common correct response:

$$
\begin{aligned}
& \begin{array}{l}
x+1=2 x+2 \rightarrow+1 \\
-x^{-2} \\
-2
\end{array}=x+2 \rightarrow-1=x \\
& \text { Answer: } x=-1
\end{aligned}
$$

Common incorrect responses:

$$
\begin{aligned}
& x+1=2 x+2 \\
& x=2 x+3 \quad x=1
\end{aligned}
$$

$$
\begin{aligned}
& 1 x+1=2 x+2 \\
&-1 x \quad-1 x
\end{aligned} \quad \begin{gathered}
1=2 x+2 \\
=2^{-2}-2 \\
-1 \\
=2 x \\
\div 2
\end{gathered} \div 2
$$

$$
\begin{aligned}
& \begin{array}{l}
2 \\
x+1= \\
2 \\
2 x+2
\end{array} \\
& \frac{x}{2}+1=\frac{2}{2} \times+2 \\
& \begin{array}{l}
1 x+1=2 x+2 \\
-1 x-2+x-2
\end{array} \\
& \% \text { •平 } 2=1.2 \\
& 1=1 x \\
& x=2
\end{aligned}
$$

*Includes those students who achieved the acceptable standard but not the standard of excellence
4. In simplest form, what is the value of $\frac{1}{6}+\frac{1}{3}+2 \frac{1}{2}$?

Answer: \qquad

Common correct responses:

$$
\begin{aligned}
& \frac{1}{6}+\frac{1}{3}+\frac{5}{x_{2}} \\
& \frac{1}{6}+\frac{2}{6}+\frac{15}{6}=\frac{18}{6}=3
\end{aligned}
$$

$$
\begin{array}{r}
\frac{1}{6}+\frac{2}{6}+2 \frac{1}{2} \rightarrow \frac{3}{6}+2 \frac{1}{2} \\
3 \leqslant \frac{1}{2}+2 \frac{1}{2}
\end{array}
$$

Common incorrect responses:
4. In simplest form, what is the value of $\frac{1}{6}+\frac{1 r^{2}}{3}+2 \frac{1 x^{2}}{2} ?^{3} 3$

$$
\begin{aligned}
& \frac{2}{6}+\frac{3}{6} \\
& \frac{1}{6}+\frac{2}{6}+2
\end{aligned}
$$

Answer: $\frac{18}{6}$

$$
\begin{aligned}
& 2+2+1=\frac{1}{6}+\frac{2}{6}+\frac{5}{2} 3 \\
& \text { alae of } \frac{1}{6}+\frac{1^{2}}{x^{2}}+2 \frac{1}{2} ?
\end{aligned}
$$

$$
\frac{18}{6}: 6 \cdot \frac{2}{1} \quad \frac{1}{6}+\frac{2}{6}+\frac{15}{6}
$$

$$
\frac{2}{9}+2 \frac{1}{2}=\frac{2}{9}+\frac{\frac{25}{11}}{2}=\frac{7}{11}
$$

| Item | Key | \% of
 Students
 with
 Correct
 Solution | Number
 of Unique
 Errors | Content
 Reporting
 Category | Item Description |
| :--- | :--- | :--- | :--- | :--- | :--- | | 9 | 3.6 | 21.2 | 1456 | RN | Apply the order of
 operations to evaluate
 a given expression with
 exponents (Gr.9, N.4) |
| :--- | :--- | :--- | :--- | :--- | :--- |

Standard Achieved by Students on Part A	\% of Students with Correct Solution	Number of Unique Errors	Three Most Common Errors (Number of Students)		
Students Achieving Standard of Excellence $(n=9130)$	58.0	300	$\begin{aligned} & 10 \\ & (608) \end{aligned}$	$\begin{aligned} & 1.8 \\ & (407) \end{aligned}$	$\begin{aligned} & 2.6 \\ & (289) \end{aligned}$
Students Achieving Acceptable Standard* ($n=12$ 217)	17.3	851	$\begin{aligned} & 10 \\ & (2416) \end{aligned}$	$\begin{aligned} & 5 \\ & (1263) \end{aligned}$	$\begin{aligned} & 2.6 \\ & (385) \end{aligned}$
Students Below Acceptable Standard $(n=20013)$	2.2	1190	$\begin{aligned} & 1 \\ & (1097) \end{aligned}$	$\begin{aligned} & 10 \\ & (948) \end{aligned}$	$\begin{aligned} & 5 \\ & (472) \end{aligned}$

*Includes those students who achieved the acceptable standard but not the standard of excellence
9. Evaluate $\frac{(2+2 \times 5)^{2}}{2(4 \times 5)}$ and express your answer as a decimal.

Answer: \qquad

Common correct response:
9. Evaluate $\frac{(2+2 \times 5)^{2}}{2(4 \times 5)}$ and express your answer as a decimal.

$$
\begin{aligned}
& \text { express your answer as a decimal. } \\
& \frac{(12)^{2}}{40}
\end{aligned} \frac{144}{40}=40 \frac{3.6}{\frac{\boxed{-120} \downarrow}{240}}=\frac{40,80,120,160,200}{240}
$$

Answer: 3.6

Common incorrect responses:

$$
\begin{array}{ccc}
2(20) & 25 & 25 \\
\frac{2}{40} & 13 & \frac{02.6}{40}=\frac{52}{20}=\frac{26}{10}=\frac{13}{5} \\
& \frac{104}{13.0} \\
& \frac{0 \downarrow}{30} \downarrow
\end{array}
$$

Answer: 2.6

Answer: \qquad

| Item | Key | \% of
 Students
 with
 Correct
 Solution | Number
 of Unique
 Errors | Content
 Reporting
 Category | Item Description |
| :--- | :--- | :--- | :--- | :--- | :--- | | 10 | 2314 | 32.1 | 442 | RN | Order given rational
 numbers involving square
 roots, fractions, powers,
 and decimals from the
 smallest value to the
 greatest value (Gr.9, N.3) |
| :--- | :--- | :--- | :--- | :--- | :--- |

Standard Achieved by Students on Part A	\% of Students with Correct Solution	Number of Unique Errors	Three Most Common Errors (Number of Students)		
Students Achieving Standard of Excellence $(n=9130)$	75.2	37	$\begin{aligned} & 1243 \\ & (1024) \end{aligned}$	$\begin{aligned} & 1324 \\ & (467) \end{aligned}$	$\begin{aligned} & 3241 \\ & (152) \end{aligned}$
Students Achieving Acceptable Standard* ($n=12$ 217)	29.7	114	$\begin{aligned} & 1243 \\ & (4752) \end{aligned}$	$\begin{aligned} & 1324 \\ & (2116) \end{aligned}$	$\begin{aligned} & 4213 \\ & (814) \end{aligned}$
Students Below Acceptable Standard $(n=20013)$	6.8	394	$\begin{aligned} & 1243 \\ & (1449) \end{aligned}$	$\begin{aligned} & 4312 \\ & (1157) \end{aligned}$	$\begin{aligned} & 1324 \\ & (931) \end{aligned}$

*Includes those students who achieved the acceptable standard but not the standard of excellence
10. Order the rational numbers listed below from smallest value to greatest value, using the numbers $1,2,3$, and 4 .

Use the number 1 to represent the smallest value.
Use the number 4 to represent the greatest value.

| Order: | |
| :--- | :--- | :--- | :--- | :--- |
| $\left.\left.\begin{array}{llll}\text { Rational } \\ \text { Number: } & \sqrt{\frac{9}{25}} & \frac{3}{4} & \\ & & & \\ \hline\end{array}\right) .0 .7\right)^{2}$ | $0.7 \overline{5}$ |

Common correct response:

Common incorrect responses:

Order:	1	2	4	3
Rational Number:	$\sqrt{\frac{9}{25}} \frac{3}{5}$	$\frac{3}{4}$	$(0.7)^{2}$	$\begin{aligned} & 0.7 \overline{5} \\ & 0.7555 \end{aligned}$

Order: Rational Number:	1	3		2	$\begin{aligned} & \sqrt{9}=\frac{3}{25}=5 \quad \frac{3}{5}=0,6 \\ & \hline \end{aligned}$		
						$\frac{\frac{3}{4}=0.75}{0.7^{2}=7 \times 7=49}$	
						4	
	$\sqrt{\frac{9}{25}}$	$\frac{3}{4}$	$(0.7)^{2}$			0.75	
$3 \sqrt{1.6}$	Order: Rational Number:	4	2	1		3	
315							
3		$\sqrt{\frac{9}{25}} \frac{3}{5}$	$\frac{3}{4}$		$(0.7)^{2}$	$0.7 \overline{5}$	
20			0.75		0.49		

| Item | Key | \% of
 Students
 with
 Correct
 Solution | Number
 of Unique
 Errors | Content
 Reporting
 Category | Item Description |
| :--- | :--- | :--- | :--- | :--- | :--- | | 11 | 4 | 57.7 | 1339 | SR | Determine the sum of two
 perfect squares that are
 given in fraction form
 (Gr.9, N.5) |
| :--- | :--- | :--- | :--- | :--- | :--- |

Standard Achieved by Students on Part A	\% of Students with Correct Solution	Number of Unique Errors	Three Most Common Errors (Number of Students)		
Students Achieving Standard of Excellence $(n=9130)$	93.8	85	$\begin{aligned} & 2 \\ & (160) \end{aligned}$	8 (65)	$\begin{aligned} & 1 \\ & (36) \end{aligned}$
Students Achieving Acceptable Standard* ($n=12$ 217)	64.7	539	$\begin{aligned} & 8 \\ & (1150) \end{aligned}$	$\begin{aligned} & 2 \\ & (873) \end{aligned}$	$\begin{aligned} & 6 \\ & (279) \end{aligned}$
Students Below Acceptable Standard ($n=20013$)	18.4	1196	$\begin{aligned} & 8 \\ & (1667) \end{aligned}$	$\begin{aligned} & 2 \\ & (486) \end{aligned}$	$\begin{aligned} & 7 \\ & (256) \end{aligned}$

*Includes those students who achieved the acceptable standard but not the standard of excellence
11. What is the value of $\sqrt{\frac{100}{25}}+\sqrt{\frac{36}{9}}$?

Answer: \qquad

Common correct response:

$$
\frac{10 \times 3}{5 \times 3}+\frac{6 \times 5}{3 \times 5}
$$

Common incorrect responses:

$$
\begin{aligned}
& \frac{10}{5}+\frac{6}{3} \rightarrow \frac{2}{1}+\frac{2}{1}=\frac{4}{2}=\frac{2}{1} \\
& \text { Answer: } 2
\end{aligned}
$$

$$
\begin{gathered}
96 \\
-27 \\
\frac{16}{7} \\
4+4
\end{gathered}
$$

Answer: 8
\qquad

*Includes those students who achieved the acceptable standard but not the standard of excellence
13. If $x=-3$, evaluate $\left(\frac{x+8}{10}+x\right)$ to the nearest tenth.

Answer: \qquad

Common correct response:

$$
\begin{aligned}
& \begin{aligned}
& \frac{-3+8}{10}+-3 \rightarrow \frac{5}{10}+-3 \rightarrow 0.5+-3=-3.5 \\
& \begin{aligned}
\text { Answer: }-2.5 & \frac{28.100}{2.50}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Common incorrect responses:

$$
\frac{-3+8}{10}+-3 \quad-3 \frac{5}{10} \quad-3 \frac{1}{2}
$$

$$
\begin{array}{ll}
\left(\frac{-3+8}{10}-3\right) & \frac{5}{10}-3 \\
\text { Answer: }-3.5 & 0.5-3=-3.5
\end{array}
$$

$$
\begin{array}{cr}
\frac{-3+8}{10}+-3 & \frac{-3}{+8} \\
\frac{5}{10}+-3 & 1
\end{array}
$$

Answer:

*Includes those students who achieved the acceptable standard but not the standard of excellence
14. How many whole numbers between 39 and 160 are perfect squares?

Answer: \qquad

Common correct response:

$$
49,64,81,100,121,144
$$

Answer: 6

Common incorrect responses:
Answer: $49,64,81,100,121,136,149$

Answer: $\quad 5$
\qquad

	\% of Students with Correct Solution	Number of Unique Errors	Content Reporting Category	Item Description	
18	34	41.0	1338	SR	Determine which two whole numbers are nearest in value to a given square root (Gr.9, N.5)

	\% of Students with Correct Solution	Number of Unique Errors	Three Most Common Errors (Number of Students)		
Standard Achieved by Students on Part A	87.3	79	12 (197)	24 (147)	1314 (112)
Students Achieving Standard of Excellence $(n=9130)$	43.8	489	1314 (902)	24 (702)	311 (556)
Students Achieving Acceptable Standard* $(n=12217)$	6.2	1203	113 (411)	(401)	1012 (329)
Students Below Acceptable Standard $(n=20013)$					

*Includes those students who achieved the acceptable standard but not the standard of excellence

Use the following information to answer question 18.
P and Q represent the two whole numbers closest to $\sqrt{\frac{121}{9}}$.

18. Determine the values of P and Q.

Answer:

(Record in the first box)
and \qquad (Record in the second box)

Common correct response:
Use the following information to answer question 18.
P and Q represent the two whole numbers closest to $\sqrt{\frac{121}{9}}$.

7. ${ }^{\text {of. }}$ Determine the values of P and Q.

Answer: $\frac{3}{P}$ and

Common incorrect responses:
18. Determine the values of P and Q.

Answer:

and

$$
\begin{aligned}
99 & =11 \\
108 & =12 \\
117 & =13 \\
& =14
\end{aligned}
$$

18. Determine the values of P and Q.
$10 \times 10=100$
$12+12=144$

$$
\frac{121}{9}=12 \frac{4}{9}
$$

| | | \% of
 Students
 with
 Correct
 Solution | Number
 of Unique
 Errors | Content
 Reporting
 Category | Item Description |
| :--- | :--- | :--- | :--- | :--- | :--- | | 19 | -27 | 48.8 | 622 | AE | Solve a linear equation
 symbolically that includes
 fractions (Gr.9, PR.3) |
| :--- | :--- | :--- | :--- | :--- | :--- |

	\% of Students with Correct Solution	Number of Unique Errors	Three Most Common Errors (Number of Students)		
Standard Achieved by Students on Part A	88.8	61	-13 (376)	-3 (146)	15 (93)
Students Achieving Standard of Excellence $(n=9 ~ 130)$	55.1	289	-13 (1213)	-3 (1086)	-9 (808)
Students Achieving Acceptable Standard* $(n=12$ 217)	13.3	523	-9	-3	3
Students Below Acceptable Standard $(n=20$ 013)	(633)	(469)			

*Includes those students who achieved the acceptable standard but not the standard of excellence
19. Solve for x in the equation $\frac{x}{3}+7=-2$.

Answer: $x=$ \qquad

Common correct response:
19. Solve for x in the equation $\frac{x}{3}+\underset{-7}{7}=-2$.

$$
\frac{x}{3 \times 3}=-9 \times 3=-27
$$

$$
\begin{array}{r}
-\frac{27}{3}+7=-2 \\
-4+7=-2
\end{array}
$$

Answer: $x=-27$

Common incorrect responses:

$$
\begin{aligned}
& \frac{x}{3}+7=-2 \\
& x+7=-6 \\
& x-7 \\
& x=-13
\end{aligned}
$$

19. Solve for x in the equation $\frac{x}{3}+7=-2$.

$$
\begin{aligned}
& \frac{3 x}{3}=-9 \\
& \frac{3 x}{3}=\frac{-9}{3}
\end{aligned}
$$

Answer: $x=,-7$

$$
\begin{aligned}
& 3 \times \frac{x}{3} \\
& x+7=-2=x=-9 \\
& -7 \\
& \text { Answer: } x=-9
\end{aligned}
$$

Item	Key	\% of Students with Correct Solution	Number of Unique Errors	Content Reporting Category	Item Description
20	0	54.3	2459	PE	Simplify and evaluate an expression by applying the exponent laws (Gr.9, N.2)

	\% of Students with Correct Solution	Number of Unique Errors	Three Most Common Errors (Number of Students)		
Standard Achieved by Students on Part A	89.1	135	1 (426)	3 (80)	2187 (72)
Students Achieving Standard of Excellence $(n=9$ 130)	60.0	1311	1 (1392)	3 (965)	2187 (322)
Students Achieving Acceptable Standard* $(n=12$ 217)	23.1	1694	3 (766)	1 (598)	45 (254)
Students Below Acceptable Standard $(n=20013)$					

*Includes those students who achieved the acceptable standard but not the standard of excellence
20. Simplify, and then evaluate $\left(3^{4} \times 3^{3}\right)-\left(3^{7} \times 3^{0}\right)$.

Answer: \qquad

Common correct response:

$$
\left(3^{1}\right)-\left(3^{1}\right)=0
$$

Answer: -

Common incorrect responses:
20. Simplify, and then evaluate $\left(3^{4} \times 3^{3}\right)-\left(3^{7} \times 3^{1}\right)$.

$$
\begin{gathered}
\left(3^{7}\right)=\left(3^{7}\right) \\
3^{0}=1
\end{gathered}
$$

Answer: \qquad
20. Simplify, and then evaluate $\begin{array}{r}\left(3^{4} \times 3^{3}\right)-\left(3^{7} \times 3^{0}\right) . \\ (81 \times 27)-0\end{array}$

$$
\begin{array}{r}
2^{2} 7 \\
27 \\
+27 \\
\hline 81
\end{array}
$$

$$
\begin{gathered}
3^{4} \times 3^{3}-3^{7} \times 3^{0} \\
3^{7}-3^{7}=3
\end{gathered}
$$

Answer: 3^{0}

Sample Questions from the 2019 Grade 9 Mathematics Provincial Achievement Test-Part B

The following eight items illustrate substantial performance differences between students who performed at the standard of excellence, those at the acceptable standard, and those below the acceptable standard.

Strands: Number (N); Patterns and Relations (PR); Shape and Space (SS); Statistics and Probability (SP)

Item	Key	\% of Students with Correct Solution	 Outcome	Item Complexity	Item Description
3	B	60.4	SS.3	Moderate	Solve a problem using the properties of similar polygons

	\% of Student Responses				
Standard Achieved by Students on Part B	A	B	C	D	No Response
Students Achieving Standard of Excellence	6.5	86.8	5.7	0.8	0.2
Students Achieving Acceptable Standard*	24.2	58.8	13.6	3.0	0.4
Students Below Acceptable Standard	36.4	39.0	16.7	6.9	1.0

[^0]Use the following information to answer question 3.
The regular hexagons shown below are similar and are arranged according to a pattern.

3. To the nearest tenth of a centimetre, what is the total length of the 6 hexagons?
A. $\quad 17.0 \mathrm{~cm}$
B. $\quad 18.4 \mathrm{~cm}$
C. $\quad 19.0 \mathrm{~cm}$
D. $\quad 19.9 \mathrm{~cm}$

		\% of Students with Correct Solution	 Outcome	Item Complexity	Item Description
14	A	51.0	PR.7	Moderate	Represent a polynomial expression in simplest form by dividing a binomial by a monomial

\% of Student Responses					
Standard Achieved by Students on Part B	A	B	C	D	No Response
Students Achieving Standard of Excellence	90.2	1.5	7.0	1.3	0.0
Students Achieving Acceptable Standard	48.6	6.4	34.5	10.4	0.1
Students Below Acceptable Standard	19.2	16.8	38.2	24.9	0.9

*Includes those students who achieved the acceptable standard, but not the standard of excellence

Use the following information to answer question 14.

Simplify the following expression.

$$
\frac{6 x^{2}-9 x}{3 x}
$$

14. Which of the following expressions represents the simplest form of the expression shown above?
A. $2 x-3$
B. $3 x-6$
C. $2 x^{2}-3 x$
D. $3 x^{2}-6 x$

		\% of Students with Correct Solution	 Outcome	Item Complexity	Item Description
18	B	55.6	SS.2	Moderate	Identify the composite 3-D object that has a certain surface area

	\% of Student Responses				
Standard Achieved by Students on Part B	A	B	C	D	No Response
Students Achieving Standard of Excellence	0.9	92.1	5.9	1.0	0.1
Students Achieving Acceptable Standard*	7.9	54.9	24.5	12.3	0.4
Students Below Acceptable Standard	15.6	23.1	27.4	32.9	1.0

*Includes those students who achieved the acceptable standard, but not the standard of excellence

Use the following information to answer question 18.
Tricia builds a 3-D object that has a surface area of $270 \mathrm{~cm}^{2}$ using 8 cubes that are identical to the cube shown below.

18. Which of the following 3-D objects did Tricia build?
A.

B.

C.

D.

		\% of Students with Correct Solution	Number of Unique Errors	 Outcome	Item Complexity	Item Description
NR1	4	55.3	534	PR.5	Low	Determine the number of algebra tiles required to model the simplified form of a given polynomial expression

Standard Achieved by Students on Part B	\% of Students with Correct Solution	Number of Unique Errors	Three Most Common Errors (Number of Students)		
Students Achieving Standard of Excellence $(\mathrm{n}=9976)$	91.6	17	$\begin{aligned} & 3 \\ & (320) \end{aligned}$	$\begin{aligned} & 12 \\ & (171) \end{aligned}$	$\begin{aligned} & 5 \\ & (76) \end{aligned}$
Students Achieving Acceptable Standard* $\text { (} \mathrm{n}=20 \text { 884) }$	63.4	82	$\begin{aligned} & 12 \\ & (2260) \end{aligned}$	$\begin{aligned} & 3 \\ & (1498) \end{aligned}$	$\begin{aligned} & 10 \\ & (657) \end{aligned}$
Students Below Acceptable Standard $(\mathrm{n}=10750)$	20.1	520	$\begin{aligned} & 12 \\ & (2621) \end{aligned}$	$\begin{aligned} & 3 \\ & (967) \end{aligned}$	$\begin{aligned} & 2 \\ & (670) \end{aligned}$

[^1]Use the following information to answer numerical-response question 1.

Numerical Response

1. What is the minimum number of algebra tiles required to represent the simplified form of the expression $-2 x^{2}+4 x+x^{2}+2-3 x$?

Answer: \qquad

		\% of Students with Correct Solution	Number of Unique Errors	 Outcome	Item Complexity	Item Description
NR2	18	58.9	675	PR.1	Moderate	Solve, using a linear equation, a given problem that involves a pictorial representation of a linear pattern

Standard Achieved by Students on Part B	$\%$ of Students with Correct Solution	Number of Unique Errors	Three Most Common Errors (Number of Students)		
Students Achieving Standard of Excellence $\text { (} \mathrm{n}=9976 \text {) }$	94.6	61	$\begin{aligned} & 16.2 \\ & (215) \end{aligned}$	$\begin{aligned} & 162 \\ & (84) \end{aligned}$	$\begin{aligned} & 26.2 \\ & (33) \end{aligned}$
Students Achieving Acceptable Standard* $(n=20884)$	68.5	320	$\begin{aligned} & 16.2 \\ & (1646) \end{aligned}$	$\begin{aligned} & 26.2 \\ & (1505) \end{aligned}$	$\begin{aligned} & 162 \\ & (461) \end{aligned}$
Students Below Acceptable Standard $\text { (} \mathrm{n}=10750 \text {) }$	21.9	598	$\begin{aligned} & 26.2 \\ & (3161) \end{aligned}$	$\begin{aligned} & 20 \\ & (1426) \end{aligned}$	$\begin{aligned} & 16.2 \\ & (799) \end{aligned}$

*Includes those students who achieved the acceptable standard, but not the standard of excellence

Use the following information to answer numerical-response question 2.

The diagram below shows a ladder with equally spaced rungs. Each rung has the same dimensions.

Numerical Response
2. The distance, d, between the rungs is \qquad cm.

*Includes those students who achieved the acceptable standard, but not the standard of excellence

Use the following information to answer numerical-response question 4.

The letter O represents the centre of the circle shown below.

Numerical Response

4. If the line shown above is a tangent to the circle, then the measure of angle x is ___ degrees.

		\% of Students with Correct Solution	Number of Unique Errors	 Outcome	Item Complexity	Item Description
NR6	65	49.8	403	PR.1	Low	Identify an expression that represents a relationship in a given pattern from a given set of expressions (Gr.7, PR.1)

Standard Achieved by Students on Part B	$\%$ of Students with Correct Solution	Number of Unique Errors	Three Most Common Errors (Number of Students)		
Students Achieving Standard of Excellence $\text { (} \mathrm{n}=9976 \text {) }$	92.4	39	$\begin{aligned} & 44 \\ & (287) \end{aligned}$	$\begin{aligned} & 56 \\ & (77) \end{aligned}$	$\begin{aligned} & 41 \\ & (74) \end{aligned}$
Students Achieving Acceptable Standard* $(n=20884)$	58.1	100	$\begin{aligned} & 44 \\ & (3622) \end{aligned}$	$\begin{aligned} & 64 \\ & (685) \end{aligned}$	$\begin{aligned} & 45 \\ & (478) \end{aligned}$
Students Below Acceptable Standard $\text { (} \mathrm{n}=10750 \text {) }$	10.2	375	$\begin{aligned} & 44 \\ & (2739) \end{aligned}$	$\begin{aligned} & 64 \\ & (1167) \end{aligned}$	$\begin{aligned} & 46 \\ & (1021) \end{aligned}$

*Includes those students who achieved the acceptable standard, but not the standard of excellence

Use the following information to answer numerical-response question 6.

The figures below represent an increasing pattern of blue, white, and yellow squares.

Figure 1

Figure 2

Figure 3

Figure 4

For each expression below, the letter n represents the figure number.
Expression \#1 n
Expression \#2 $2 n$
Expression \#3 $n-1$
Expression \#4 $n+2$
Expression \#5 $2 n-1$
Expression \#6 $2 n+1$

Numerical Response
6. The number of yellow squares in each figure can be represented by Expression \# \qquad . (Record in the first box)

The number of blue squares in each figure can be represented by Expression \# \qquad . (Record in the second box)

Provincial Achievement Testing Program Support Documents

The Alberta Education website contains several documents that provide valuable information about various aspects of the provincial achievement testing program. To access these documents, go to the Alberta Education website. Click on one of the specific links to access the following documents.

Provincial Achievement Testing Program General Information Bulletin

The General Information Bulletin is a compilation of several documents produced by Alberta Education and is intended to provide superintendents, principals, and teachers with easy access to information about all aspects of the Provincial Achievement Test Program. Sections in the bulletin contain information pertaining to schedules and significant dates; security and test rules; test administration directives, guidelines, and procedures; calculator and computer policies; test accommodations; test marking and results; field testing; resources and web documents; forms and samples; and Provincial Assessment Sector contacts.

Subject bulletins

At the beginning of each school year, subject bulletins are posted on the Alberta Education website for all provincial achievement test subjects for grades 6 and 9 . Each bulletin provides descriptions of assessment standards, test design and blueprinting, and scoring guides (where applicable) as well as suggestions for preparing students to write the tests and information about how teachers can participate in test development activities.

Examples of the standards for students' writing

For provincial achievement tests in grades 6 and 9 English Language Arts and Français/French Language Arts, writing samples are designed for teachers and students to enhance students' writing and to assess this writing relative to the standards inherent in the scoring guides. The exemplars documents contain sample responses with scoring rationales that relate student work to the scoring categories and scoring criteria.

Previous provincial achievement tests and answer keys

All January provincial achievement tests (parts A and B) for Grade 9 semestered students are secured and must be returned to Alberta Education. All May/June provincial achievement tests are secured except Part A of grades 6 and 9 English Language Arts and Français/French Language Arts. Unused or extra copies of only these Part A tests may be kept at the school after administration. Teachers may also use the released items and/or tests that are posted on the Alberta Education website.

Parent guides

Each school year, versions of the Alberta Provincial Achievement Testing Parent Guide for grades 6 and 9 are posted on the Alberta Education website. Each guide answers frequently asked questions about the Provincial Achievement Test Program and provides descriptions of and sample questions for each provincial achievement test subject.

Involvement of teachers

Teachers of grades 6 and 9 are encouraged to take part in activities related to the Provincial Achievement Test Program. These activities include item development, test validation, field testing, and marking. In addition, arrangements can be made through the Alberta Regional Professional Development Consortia for teacher in-service workshops on topics such as interpreting provincial achievement test results to improve student learning.

[^0]: *Includes those students who achieved the acceptable standard, but not the standard of excellence

[^1]: *Includes those students who achieved the acceptable standard, but not the standard of excellence

